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Bead-Fourier path-integral Monte Carlo method applied to systems of identical particles
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To make the path-integral Monte Carl®IMC) method more effective and practical in application to
systems of identical particles with strong interactions, we introduce a combined bead-RB&jigPIMC
approach with the ordinary bead method and the Fourier PIMC method of Doll and Frég&n@irem. Phys.

80, 2239(1984; 80, 5709 (1984] being its extreme cases. Optimal choice of the number of beads and of
Fourier components enables us to reproduce reliably the ground-state energy and electron density distribution
in the H atom as well as the exact data for the harmonic oscillator. Applying the BF method to systems of
identical particles we use the procedure of simultaneous accounting for all classes of permutations suggested in
the previous workPhys. Rev. A48, 4075(1993] with subsequent symmetrization of the exchange factor in

the weight function to make the sign problem milder. A procedure of random walk in the spin space enables
us to obtain spin-dependent averages. We derived exact partition functions and canonical averages for a model
system of N noninteracting identical particlesN&2,3,4...) with the spin (fermions or bosonsin a
d-dimensional harmonic fieldd= 1,2,3) that provided a reliable test of the developed MC procedures. Simu-
lations forN=2,3 reproduce well the exact dependencies. Further simulations showed how gradual switching
on of the electrostatic repulsion between particles in this system results in significant weakening of the
exchange effect$S1063-651X97)07601-0

PACS numbeg(s): 02.70.Lq, 03.65-w, 05.30.Fk

I. INTRODUCTION function in the Fourier method is exact. The approximation
used implies neglecting all higher harmonics with K.
Development of path-integral Monte CallBIMC) meth-  Hence, for each set of input physical parameterg., tem-
ods for finite-temperature simulations of quantum systems gperature, potentiglit is necessary to choose such a value of
identical particlegparticularly fermiongremains a challeng- k. that its further increase does not affect the output MC
ing problem of statistical mechani¢$—6). averages. The Fourier PIMC method was successfully used
In a previous worK2] a PIMC method was suggested to in several recent works,8,19 and proved to be superior in
simulate equilibrium properties of aft+electron system. The some aspects to the bead methedg., [8]). It should be
main points of the approach wet®) the sum over permuta- pointed out, however, that the number of harmonics used in
tions was reduced to the sum over clas$@s;expressions calculations even for systems of heavy particles with rela-
for distribution functions over absolute values of the totaltively weak interactions and with no accounting for ex-
spin and its projection were constructed, enabling calculachange attains several hundfd®]. This means, in particu-
tions of spin-dependent averagé3) the partition function lar, that the number of integration points in the potential part
was presented in a form in which contributions from all of the action should be also several hundred. In the case of
classes of permutations are accounted for in the weight funcelectrons in strong external fields of nuclei, if the Fourier
tion simultaneously, and hence there is no need to make M@ethod is used, a further increaselgf,, seems to be nec-
transitions between different permutations in the course of @ssary, and that can make such calculations impractical. On
random walk in the coordinate space. the other hand, our previous computational experience in the
It should also be noted that continuous trajectories repreframework of the bead method has shown that for systems
senting each quantum particle in the PIMC method werawvith strong interactionge.g., an electron in a hydrogen
approximated in[2] by a finite number of vertices atom) we encounter rather slow convergence of results when
(“beads”); this approximation usually being called the the number of beads is increased with some other undesir-
“bead method” (e.g.,[7,8]). Meanwhile there exists another able effects. In order to make PIMC calculations practical
means of presenting continuous trajectories of quantum paend more reliable in conditions of strong interactions, we
ticles, that is, the Fourier methof®,10] introduced into  develop a generdtombined method which unifies two ex-
PIMC simulations by Doll and Freemdril] and recently isting approaches and includes them as its extreme cases.
applied by Chakravartys] to simulate systems of identical While in the bead method the number of variableN isd, N
particles. In the Fourier PIMC method there is only oneandd being the number of particles and dimensionality and
“bead” per particle and all the multitude of trajectories start- n the number of beads, in the Fourier method we have
ing and ending at this bead is presented by a Fourier seriddd(1+Kk,,,,) variables. In the bead-Fourier variant of the
with an infinite set of amplitudea, . The functional integral PIMC method it becomesind(1+k,,,,) (see Sec. )l Al-
representing the partition function is transformed, in thisthough the latter exceeds both of the former it appears pos-
case, into an integral over coordinates of this single bead ansible to choose an optimal computational regime with rela-
integrals over an infinite set of Fourier amplitudes. As longtively small values ok, (@bout 3—6 and simultaneously
as the set ofy, is infinite, the expression for the partition an optimal number of beads in order to provide convergence
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and good accuracy of results at modest computation expense(u,) =Xp,..., X(Uj)=Xj,..., X(Up)=X,, X(Up;1)=X;.

It would also be clear from our test calculations that theThen the partition functio can be expressed as follows:

extreme regimegpure bead or pure Fourier procedyrase

not the optimal ones. . . .
Formulation of the suggested bead-Fourier PIMC method Z:f dX1---an 2D(x(u))J' 3D(x(u))...f 1D(x(u))

for systems of distinguishable and identical particles is pre- X1 X2 Xn

sented in Sec. Il. In this section we also construct the parti- e o

tion function in a form symmetrical with respect to permu- Xexp{ - 121 fu j+1 mx;u) +FV(X(W))

]

tations. This makes contributions of all beads to exchange
equal and thus lowers computational errors. Finally still an-
other form of the partition function is obtained, enabling us
to formulate a MC procedure with additional random walk in Wherefdx, ...x, are ordinary one-dimensional integrals, and
the space of total spin or its projection. This provides afﬁi“D(x(u)) are functional integrals over trajectories start-
straightforward means to calculate §pin—depender_1t a\_/eragqﬁé atx; and ending ak; , ;. Now introducing a designation
In Sec. Il we obtain the bead-Fourier forms for kinetic and
potential energy estimators ik, approximation. For ki-
netic energy both “primitive” and virial forms are obtained. 1 [y
In order to test computer algorithms created according to S (x(u))= 7 J
schemes adopted in Secs. Il and lll, it is desirable to repro-
duce existing exact results for model systems. Exact expres-
sions for the partition function, internal energy, and the av-we can rewrite Eq(3) as
erage of the square of total spin for a system Nf
noninteracting identical particles indadimensional external N

e . ) .
har_momc f|eld, are obtained in Sec. IV. In Sec. V.We de- Z:f 1—[ (dxjf i lD(x(u))exp[—Sj(x(u))]) @
scribe main features of algorithms and programming. The 1<j=n X;
results illustrating feasibility of the suggested method are
presented in Sec. VI. Final remarks and conclusions are

made in Sec. VII. Some relevant analytical calculations ardVith the conditionx, . ;=x;. - _
carried out in the Appendix. Following [10] for each intervalx;,x;,,; we consider:

Xj(U)=Xcj(u)+y;(u), where Xg(u)=x;+(Xj+1—X%;)(u
—U;)/(uj 41— U;) is alinear functionxc;(u;) =X, X¢j(Uj+1)

du], 3

mx(u)?
2

+V(x(u))|du,

Yj

Il. BEAD-FOURIER PATH-INTEGRAL :Xj+l! and yj(uj):yj(uj+l):0- So the Componeryj(u)
MONTE CARLO METHOD for each interval can be presented as a Fourier sine expansion
A. A single particle in one dimension
We start with a single quantum particle of massin _ _ km(u—u))
one-dimensional external potentl(x) at inverse tempera- yi(u)_lgkgc ajk SIn Ujs1—Uj

ture B. The relevant partition function can be expressed as a
functional integral9,13]
The kinetic energy term in the actidgj(x(u)), can be ex-
_ _ _ pressed explicitly. Using the designatier=u;,;—u;, we
Z=Tre % D (x(u)exd = Sx(u)], @ get the derivativex

where $D(x(u)) denotes integration over all closed tra- (Xis1—X:)
jectories  x(u) x(0)=x(BHh)), and  S(x(u)) x:LjLE aj
=14 B[ mx(u)?/2] + V(x(u))}du—action on Euclidean & 3
time u. Equation(1) can also be expressed as

km

&

cosw . (5)

Introduce a new variable {=(u—uj)/e, so that

X(Bh)=x _ _ _ _ _ Ui
Z:jdxf D(x(u))exd — S(x(u))], (2) U=u—é&=0, U—Uj+1—>§.—1, du=edé§, and fu} ‘du
x(0)=x transforms intoe [ 3d&. For x? we now obtain

with the external one-dimensional ordinary integration,

and the internal functional integral over all closed trajecto- . 2_(Xj+1_xj)2 Xj+17X] kar

ries with the initial and final points at fixexl. This expres- X(W=— —*+2— Zk ajk| | cokmé
sion was the basis for the Fourier PIMC method of Doll and

Freeman11]. To create the combined method we take the ka 2

next step: we divide the whole “time” intervdD,5%] into n + ; Ay —~[COKTE| . (6)

parts(we shall consider them equal, though it is not neces-

sary and introduce the following notationsu;=0,

u,=[ghin],..., u=[(j—1)BA/n],..., u,=[(n=1)pA!/  Aslong asfgcoskmé dé=0 for k=1,2,... thekinetic part
n], U,.1=pBh; Au=[BhIn]=e. Let also x(u;)=x;, of the action on thgth interval in Eq.(4) is
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1 (uj+1 m¥ me 3N-dimensional analogies of Eq&) and(4). Further trans-
7 J — du=o X(§)2d§ formations yieldZ in the final form
u
_ (Xj+1_xj)2 2 ajzk ZD:f dre ™,
(kw)z _ <kw>
=1 %)+ 2 a2 H—lgs (@42= )+ X A3
In the latter expression we introduced dimensionless coordi- + J1V[a-(§)]d§ (12)
nates and Fourier amplitudez=x/unit, a=a/unit; where ! ’

unit =A%/, A2=(A?n); A=(Bh?)/(2mm), andA is _ _
the thermal de Broglie wavelength. with the conditionq,,,.;=q;. The designations in Eq12)
The potential part of the action now can be written in neware
variables and units as o
a;=(ofiee)y Fip=Xiag  Xizj  Xiz)),
1 (Y41 B (! I~
gf V(x(u))du= " fov[xj(§)]d§=fov[xj(é)]dé, and

Yj

() ~
~ =(oBigigs .- i=1,..N; s=1,2,3.
where  V(X)=(BIMVunitX); %(&=%+ (X, 1-%)¢ A= Bisjcr--) - ati=1...N; s=1,2,3
+2,@j sinkmé. As a result the actloS is So that
(k7 )2 1 ~ ~ .
Si{apd) = Xj+1-X%;) +Z Jk+f0V[Xj(§)]d§. qj(&)=[... Xisj(§),...I;
© Xisj(6) =Xisj(1— &) +Xig(j 4+ 1) €+ Zi@isj SIN k7TE.

Now again following[10] we can pass from the functional

integral over trajectoriegii*lD(x(u)) to the integral over And
]
Fourier coefficientsa
. dr= H ISJ].—.[ damk
Xj+1 1<j=n \/— V2
D(x(w)exd —S;x(up]= | 11 da L=i=N
X; K s=1,2,3
Xexp[—Sj({ﬁjk})]. (10 Both Egs.(11) and (12) are exact expressions for any

. ) finite number of beads as long as the set &fis infinite. In
Here J;= (LA )IL [(7k/v2)(1/A,)] is the Jacobian of the poth expressions the exp factor can be treated as an “effec-
transformation. As a result the partition functieh becomes  tiye Hamiltonian” of some “classical” system. It is also
evident that expressiondll) and (12) include the “pure
=f dre ", Fourier” method of Doll and Freemajil] and the “pure
bead” method as the extreme cases. In the case
n=1I1; ;= ,dX—dX, S1-j=n(X;+1—X;)? disappears in Eq.
(12) [in Eg. (12) analogous changes ocg¢uand we come to
the partition functionZ in pure Fourier form[11]. On the
. other hand, if we removél,da, and X, in Egs.(11) and
s (12), i.e., putk,,=0 we come to the vertetbead method.
+f V[Xj(g)]dg} (D In the latter case the only difference is that in a pure bead
method the potential centers are located on beads, whereas in
and our extreme case the potential is uniformly spread along the
straight lines between beads. This allows us to get a better

(kﬂf)2

H= > {('i,-ﬂ X))?+ 2

1<j<n

J estimation for the potential energy than in a pure bead
dr= 11 day |. method
1=j=n \/_ N .
H is an effective Hamiltonian. C. N identical particles in three dimensions

Now we consider a system d&f indistinguishable par-
ticles (fermions or bosonsin three-dimensional space. Ex-
The bead-Fourier form of the partition function for a pressing the density matrix” as an antisymmetriesym-

three-dimensional system &f distinguishable particles can metric sum of density matrices for a system o
be obtained in a way similar to the previous result, 8q).  distinguishable particlep!® we get the following expres-
Starting with the procedure described in Sec. Il A we obtainsion for the partition functiof13]:

B. N distinguishable particles in three dimensions
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_ A, 2
Z—Tlr(p< 9) HG:lgs(:) (ﬁj+1—ﬁj)2+; (k;r) 3 3
=Nl % §[P]f dxg...dxnp P (Xq .. XN P(X)...P(XN)). .
(13 i j , V@()dé
Herex; is a set of space coordinates and spin variabtes: S in Eq. (19) means the sum over beads on condition

=(r,0), andfdx==,/dF, £ equals to—1 for fermions and  that . ;=Ps(q;). this being the only difference between
1 for bosons, andR]—parity of the permutatiorP. Below  Egs.(12) and(19).

we shall consider mostly fermiong==1/2). The density Now following [2] we change the order of the summation
matrix p®) in Eq. (13) for the spin-independent Hamiltonian over classes and the integration over coordinates and Fourier
can be presented aSp(D)ngD)(Fl,...,FN ,P(Fy),...,  coefficients in Eqs(17)—(19) and we distinguish as a factor
P("\))psp(P), wherep (P s its coordinate contribution and a sum of exponents containif, and . ;=Pg(q;). We
psp(P) is its spin part for permutatioR obtain the expression

Psp(P):5(0'1:P(0'1))---5((TN ,P(an)). (14

z=2] acZp(G)
Substituting Eq(14) into Eq. (13) we obtain, for the parti- G
tion functionZz, _ _ (km)? ~
:fd;exlﬂ’_ > |:(qj+l_qj)2+ — Ak
1<sjsn-1 k 2

1
Z=17 2 dTK(PIZo(P). (19 .
- {P} ~ -
+j V(g;(£))d¢ ]2 aGEXPr _[(dn_PG(Ch))Z
Here K(P)=2, s ==120(01,P(04))...8(on,P(on)) is 0 ¢
the spin contribution to the partition function adg (P) is (km)? ~ 1o
the coordinate part of the partition function for the permuta- +§k: — A it fo V(@ 5(8) | dé, (20)

tion P
whereq $(€)=0n(1— &)+ Pg(Ay) é+ = Any sinkré.

D. Symmetrization of Z

= | dgp®(q,P(q)). (16) Now we subtract and add in the exponent in E20)
f RCBAA the _ following  term  @,—q.)%+3[(km)%2]A2,

+JV .
In the latter form we used the designatign=(fy,...,ly) [V (@n(£))dé. So we get

introduced earlier in Sec. |l B. Ty
Following [2] we rewrite the partition functiod (15) as a Z= f dre™"w, (21)
sum over classes of permutatiof§}. Then &Pl £C])
K(P)=K(G)=2*%®, where C,(G) is the number of whereH is determined by Eq(12) and
cycles of lengthw in the given clas$s, so that2 ,C,(G) is
the total number of cycles in the cla& Zp(P)=2(G), an
since the value of an integral over all coordinates depends W=2 age M, (22
: . G
only on the cycle structure of the permutation. This way the

partition function becomes
where

2= S EKONO1Z6(6)=F acZo(®), (7 AHg=Ho—H

=(0n—Ps(41))*— (Gn—01)?
wheren(G) is the number of permutations in the given class

G [13,2]. In the last form we introduced a designation + le’/@ G(g))dé — fl\~/('n(§))d§ _
0 0
ag=¢&"K(G) NI (18) Then we multiply and divide the expressi@i) by n and

rewrite it as 1hX [_;. After that we renumerate indices of
The bead-Fourier form aZ,(G) can be readily obtained the beadg in each next integral of the sum shifting them by
from Eq. (12 unity with respect to the previous one. Bafh andH, being
a cyclic product and a sum, remain unchanged. Gathering all
“H the terms in the sum under common integfalr we take
ZD(G):I dre"e, (19 into account thae " is the common term. So finally we
obtain again expressio21) with another (symmetrical
where form of W
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ag Q) d d InZ(B)
w=), — e 4He, 23 E=— (BF)=———, 30
% N 1<j<n 23 B BF) B (30)
Here whereZ(B) is the canonical partition function. In the sim-

. plest casdone particle in one dimensipnve substitute Eq.

D (m P (= == 2 UG (11) for Z into Eq.(30). Before differentiation thé& approxi-
HG'= (@~ Po(Tj+1)~ (T —Tj+a) +f0 V(@ 7(£)dé mation should be introduced, i.e., we must hold only first
terms with I=<k=k,,,in the infinite sums and products over

- )
B J’O V(dj(g))dg ' k. Then Eq.(30) yields

E=(ex)+(ep), (31
Expression(21), for the partition function with Eq(23) for
W, is an exact one in which all beads<]<n, make an Where
equal contribution to the exchange between particles. N
. L. . ) 6K 2 (1+kmax) B B
E. Forms of Z with explicit averaging over total spin
or over its projection

Kmax 2
_ The coefficientsig can be presented in one of the follow- a= E (VJ+1 X ) + E (k )’ 5 ]k , (32)
ing forms[2]:
n(G) 13 [t 10 [ie
ag=2 as, Aacs=SYNG)(25+1)(S,G) —i p=— 2, fV(xj(g))dg=—2 fv(ij(g))dg.
S 24 ni=1Jo Bi=1 o (33)
B ( ) Here, and belowgy and ep are estimators of kinetic and
aG_% gm:  8em=SgNG)a(m,G) 5=, (29 potential energies. Note thatt Bep=H for H (11). X;(£) is

determined in Eq(8) with =, limited by K.y Averaglng
where Q(S,G) is the distribution over values of the total (O) in Eq. (31) implies
spin S(0(1/2)<S<N/2) and o(m,G) is the spin-projection
distribution (— N/2=m=N/2) for the clas<s [2]. So we can

_7-1 —H
rewrite Eq.(21) in the following form: (0)=z f d70e™", (34)

B B whereZ andH are determined in Eq11).
2_25: ZS_Em: Zm» (26 In the case of a three-dimensional systemNbfdistin-
guishableparticles we substitute Eq12) into Eq. (30) and
where we again obtain Eq31) with
_ acs _AHD 3Nn 1 «
Zs= | dre Pwg, Wg=D, —= e 4Hs 2 = -2
o [ e, weeg 5B S @7 «=g (el g7

Kmax k’JT) 2

=121{<a,-+1—a,->2+k21 > K,?k} (32)

a .
zm=f dre MW, Wa=> —2 3 e 4Hd (28

1 1 1 1
This representation of the partition function allows us to P L le fo V(q;(¢))dé= E 121 0 V(aj(f))dg' )
make a random walk over the values of the total spin or its (
projection and calculate corresponding spin-dependent aver-

ages, e.g{S(S+1)) Averaging(O) means again Eq34), now with Z andH
from Eq. (12), H=a+ Bep with « and ep from Egs.(32)
(S(S+1))= 1 > S(S+1)Zs. (290 and(33); a;, (9 andAJk are the 3-dimensional vectors
VAN introduced in Sec 1B, an&, in q (&) being limited by
kmax
IIl. ENERGY ESTIMATORS ~ Now for the three-dimensional system Mfidenticalpar-
IN THE BEAD-FOURIER EORM ticles (fermiong we start with the partition function&l?)
o _ and(19). Differentiation(30) now yields again Eq(31) with
A. The primitive estimator Eq. (32) for e, and with(a) and(ep), now determined by
The so-called primitive estimator for the internal energy
can be obtained from the Gibbs-Helmholtz equatierg., <a>=Z_1E aGJ d7ace Mo (35)
[14)) G ’
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(epy=2"12 aej d7epce™ e,
G

whereZ=3gagfdre "c. Here

©) Kmax (k )2 )
ag= Z (Qj+1—7)) +E Al (39
1.0 1 120 1
pe=— >, (@ | V(gj(&)dé=— > @ | V(G;()dé
nji= 0 Bi=1 0
(37)

Hs (19) andHg=ag+ Bepg. The meaning of(® is the
same as in Eq.19). ForH (12), Hg (19), « (323, a¢ (36),
€p (33), epg (37) we can write

HG:H“FAHG, (IG:(I+AC¥G, epG:€p+AEpG,

where

Aag= [ﬁn— PG(al)]z_ (ﬁn—ﬁl)z,

1 G 1
Aepo= [ VIaS(@de- [ Viayeae,

AHG:AQG‘l‘ﬁAEpG.
Then Eq.(30) yields
E=(ex)+(AeZMN+ (ep)+ (A e, (38)

whereeg andep are determined as before by E¢323 and
(333; and forA 2" A eZ"we have

A e2Xh= (,BW)’li(;, agAage 2He, (39)

AEEXCh:W712 aGAEpGeiAHG, WIZ aGeiAHG.
G G
(40)

Averaging(O) in Eq. (38) implies

<o>=z—1J d70e Hw, z:fd?e—'*w. (41)

The averagg38) can also be presented in symmetrical

form
E=(ex)+(AeEN +(ep)+(A€EE (38)

with e« and ep determined, as in Eq.38), by Egs.(32),
(33), and where

A= (BW) 1Y ag = > Aadle™4Me, (39)
G N 1<j<n
exch_yp/—1 1 0 _AHW
A=W 1> B, 2 Aedle
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W=% B2 e AHall (40)
with
Aad) =[G~ Ps(Gj+ 1)1~ (T~ G+ 1)
Aedl= folvm?(f)]dg— fOlV[qj(g)]ds,
and

AHY =Aad) + BA €l

W and AH ) were already determined by E(23) in Sec.
IIc.

Aeﬁxsd‘ andA eeXCh are expressed in Eq&9') and(40) in
symmetrized form(see Sec. Il € Averaging(O) in this
case implies Eq41) with W from Eq. (40') [see also Egs.
(21), (22), (23)].

In the last two cases the integrand in the partition function
Z (21) includes, in addition to the positive weight factor

H the factorW which can change its sign. In order to
apply MC important sampling41) should be transformed
into an expression including averages over positive weight
function

d70 sgnw)|wje

<o>=z*1f drowe H=
f d7 sgnw)|wje "

-H
J o7 1we (0 sgrw)).
X = . (42
fd;lW|e7H <Sgr(W)>+
Here{((--+)), means
| & wie
()= : (43
fd?|W|e’H

an averaging procedure with non-negative normalized
weight function |W|e "/fd7 [wW|e " which now can be
carried out within Metropolis procedure.

B. Virial estimator

In the same way as it has been done[14] in “pure
bead” PIMC method we can construct a virial estimator for
the kinetic energy within the bead-Fourier approach. Starting
again with the cas&l=1; d=1 we introduce the following
linear operatot:

~ n {9 kmax (9
L= Xi =+ A —|. 44
jZl ! &X] kZ]_ ik ﬁajk ( )

Applying the L operator toH from Eq. (11) we construct
canonical averagéLH) according to Eq.(34). Each of
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ﬂ(1+ kmax) terms in the sumL eg., X (a/ax) or
a k(a/aa ), being applied tdH with subsequent averaging
(34) ylelds 1[14]. So we get
(LH)Y=n(1+Kpa- (45)
As far as forH (11) we haveH =a+ Bep, Wherea and ep
are Egs(32) and(33), we can write
(LHY=(La)+ B(Lep) =N(1+Kpay. (46)
Note thata (32) is a quadratic form of Fourier amplitudes
aj and a cyclic sum of terms&'(H—SZj)z. So it provides
La=2a and Eq.(46) yields

2(a)+ B(Lep)=nN(1+Kmad,

or

—<Lep> <1+kmax> —<a>- @7

The right side of Eq(47) is the kinetic energysee Eqs(31)

and(32)]. So it can be now expressed as an average of th

virial estimatore ()

n kmax €
orfito)- (5 Tu )

For N distinguishable particlegl= 3, with similar steps we

can arrive at
(~ 9
q- —_—+
] aqj

And finally we consider the case ®f indistinguishable
particles,d=3. Using the expression for partition functions
(17), (19 we can introducé.H with L (49) and the average
(LH)

kmax

17

L ———

k
" oAk

=3

=1

(=2 (Len),
2 k=1

(49)

(IA_H>=Z’1% aef d7(LHg)e Mo

> aGf d7e He
G
—3NN(L+ Ky

> acZp(G)
G

=3Nn(1+Kmnay- (50
HereH is determined by Eq(19), ag is EQ. (36), €pg IS
Eq. (37), andHg= ag+ Bepg (see Sec. Il A

As far asH = a+ Bep with EQs.(329 and(333 for « and
€p

(LHY=(La)+ B(Lep)=3NN(1+Kna).  (51)

Now as far asxg in Eq. (36) is again a quadratic form of
Fourier amphtudesljk and a cyclic sum of terms of the type
(Xi+1—X;)* we can show again thata=2a. If we substi-
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tute this into Eq(51), take into account Eq$35), (32'), and
(33'), we again obtain the virial estimator for the kinetic
energye ()

e|(<”>= %I:ep (52

with L from Eq. (49.

IV. EXACT RESULTS FOR A SYSTEM OF N
NONINTERACTING IDENTICAL PARTICLES
IN D-DIMENSIONAL OSCILLATOR FIELD

An exact expression of partition function for a system of
N noninteracting spinless quantum identical particles in a
one-dimensionald= 1) oscillator field was derived ifl5]

11

1<I=<N

-1

VARES (53)

(2 sinh%ﬁ) et (NN=D/p

whereA (antisymmetrical and the upper sign refer to spin-
less fermions(“‘polarized electrons’} and S (symmetrical

and the lower sign refer to bosons. The corresponding ex-
gression forN distinguishable particles is well known

-N

zZQ)=(z)N= ( 2 sinhg : (54)

whereZ; is a single particle canonical partition functi¢in

all that follows we useB instead offfiw, i.€., considefi=w

=1). Expression(53) for Z{{® is easily derived ifd=1,
sp=0 [15] though its obtaining in similar cases fd=2,3

and sp=1/2 is not straightforward. The analysis of these
cases that follows is based on the general expression for
z{9 (19, (17)

1
2= > EPKPIZY(P)
1
=§r > €9KENOGIZPG). (59
To be specific we start withl=2
ZP9=3K(1HZP(1)FK(2)ZP(2)]. (56

Here two classes of permutations fér=2 are designated as
12 and 2 anch(1?)=n(2)=1 [16].
For ad-dimensional harmonic oscillator fiel®6) yields
Z9(d,sp)=3[K(13)(ZD)*FK(2)(Z2)],  (57)
where Z; is the partition function of a single particle in a
one-dimensional case ag is the one for a cycle involving
two particles(d=1, sp=0). They are determined by the

general expression foZ, derived in the Appendix, Eq.
(A30)

VT o (58
14
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For sp=0 K(G)=1_ for all G; for sp=1/2 K(12.)=4, E<2A)(d,sp=0)=dE(2A)(d:1, sp=0)
K(2)=2 [2]. Now using Eq.{58) we present Eq(57) in the
following form: 0 ford=1
1 for d=2
Z(ZA,S)(d'Sp):[Z(ZA,S)]dfz(d,Sp), (59 - 628 (67)
whereZ 9 is a one-dimensional partition functiosp=0, 3e2F5q ford=3
determined by Eq(53) for N=2 and
N and
1 ,. [ 2sinhpe™ (A2 d
foldsp=5 | KA | —————F5— 1
25inh§ E(ZA)<d,Sp= §)IdE(2A)(d:1v sp=0)
B d ref
FK(2)| 2 sinh> eiWZ]) . 60 — -
+ ()( 5 (60) 3 ford=1
) 2e’P+6ef or de2
— —p—5— for d=
For the antisymmetrical case arsp=0 f,(d,sp) can be e’ +6ef+1
presented as 3e%f+18e%F+ 3¢ for de3
3B+ 9021 368 or a=s,
fo(d,sp=0)=3[(e?+1)'—(ef-1)%].  (6D) \ e F9eT3en 3
(68)

So the corresponding partition function is
whereE Y (d=1, sp=0) is the energy of two particles with
1 ford=1 sp=0 in a one-dimensional oscillator field obtained from
ZM(d,sp=0)=(ZM)4x { 2ef for d=2 (620 Ed.(53
3e?$+1 for d=3. 8
EXY(d=1, sp=0)=% coth= +coth3+%. (69

Similarly to Eq. (61) for the symmetrical casesp=0) we 2
get
L g g For a system of fermions witap=1/2 we can calculate
fa(d,sp=0)=3[(1+e #)+(1-e #)? (63  the value of the square of the total SHiB(S+1)). Using
and Eqg. (29) and the coefficients frorf2] we write
(d)
1 ford=1 (S(s+1))
Z9(d,sp=0)=(Z)9x{ 1+e 2# for d=2 1
1+3e 28 for d=3. SLOXIX(L(Z]) M+ 1(Z5) )+ 1X2X (3(Z9) = 3(Z2))]
(64) =
— H ZZ dlsp: 5
It should be noted that fod=1 in both cases we really 2
obtain Eq.(53) for N=2. (70

Finally for fermions withsp=1/2 we have
Using Eqgs.(62) and (66) we get

fz(d,spz %)z%[4(eﬁ+l)d—2(eﬂ—l)d] (65) )

m for d=1

12e#
(S(S+1))= 1« 2P 6eP+1 for d=2 (71

and

1
25’*>(d,sp= 5):<z<2’*>)d y
6(3e+1)
ef+3 for d=1 [ e’#+9e’P+3eP+3

x{ e?f+6ef+1 for d=2

for d=3.

As should be expected, in all casg¥ S+ 1)) tends to zero

e’ +9e*+3ef+3 for d=3. for B— (spin compensation at low temperatyresd to
(66) 2x32 for B—0 (a system of two independent “classical”
electrons.

In all these cases the energy can be easily derived from For a system of three particledl&3) the antisymmetri-
E=—(4/48)(In Z). For antisymmetrical cases we can write cal partition function55) can be represented similarly to Eq.
(in Aw unity (57) as
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1 f3(d,sp)=3[(8)((eP+1)(e* +ef+1))I-3(4)(e®l—1)¢
2= KB 3KADZZ 2K @), or (e et
72

HereK;(1%)=8,K;(12)=4, andK(3)=2 for sp=1/2[2].
Now, as in the previous case, we rewrite EZR) in the form

+2(2)(e®f—e?f—ef+1)9]. (74)

(A) _r7(A)7d
Z3"(d,sp)=[Z57 ] 5(d,sp), (73 Here the additional coefficients 8, 4, and 2 are present only

whereZ{V is Eq. (53) for N=3 andf4(d,sp) can be re- in the casesp=1/2. Finally for the partition function we
duced[similarly to Egs.(61) and(65)] to obtain, forsp=0

1 ford=1
ZM(d,sp=0)=[ZM]9x{ e*$+4e%+e?f for d=2 (75)
3e’P+10e%6+ 6%+ 66+ 7e3F+3e26+1 for d=3

and forsp=1/2

. 2(e®P+ef+2) for d=1
z<3A>( d,sp= E) =[Z{M]9% { 2eP(2e*#+5e%F+10e*P+5ef+2) for d=2 (76)
2(3e8P+12e"P + 29258 + 30254 + 30e*F + 23e3F + 12?2+ 3ef+2) for d=3.

The expressions for the energy and the value of the square of the total spla-fdrare becoming rather long, so here we
present them only fod= 1,3 andsp=1/2 considering that all the rest can be easily derived similarly to &3%, (68), and
(71). So

2e?P+ef
ef+ef+2
24eP+ 84e"P+ 17458 + 1500°F + 120e*P + 69e3F + 24P + 3€

for d=1
1
E(3A)<d,sp= 5) =dEMN(d=1, sp=0)—

36%F 1 1267P 1 206°P 1 306°P 1 306" 1 2367+ 126%F 1 3eP 12 O U=3
(77
and
3 e?+ef+10 or d
4 PP 0471
(S(S+1))= .

3 3e®P+36e7P+ 1095/ + 78e°F + 78e*F+ 79+ 36e?P + 3eP + 10

4 3e%P 1 1267P1 2967 1 3065+ 306 1 2369+ 1261 3eP 12 O 973

For high temperatureg8—0) (S(S+1)) tends to3x3 (three  For calculations of{ S(S+1)) forms (26), (27), and (29)
independent particlgsvhile for low temperature¢f—x) it  were used. Two independent programs were credfigdn
yields 3/4. Pascal and2) in C language.

For greater number of particlesNE4,5,...) analogous In accord with the weight function in Eq§26) and (27)
expressions can be obtained according to the same genetak MC random walk includes three main types of steps with
scheme starting with formulas similar to E4S7), (72), and  attempts of(1) Shift of an arbitrary beagl (1<j<n) of an
(70). Though becoming more and more cumbersome thesgrpitrary particlei (1<i<N); (2) change of an arbitrary
expressions can be easily obtained with the aid of the ang-grier amplituden;, (1<k=Kkp,y); and (3) change of the
lytical programs(e.g.,MATHEMATICA ). spin S [trial of a new set of coefficientagg in Eq. (27)].
This point is performed simultaneously with the step of the
first or the second kind. For better averaging, several addi-
tional types of steps were included as wéH) move the

As a basis of simulations we used the partition functionswhole trajectory of a particle by means @j parallel shift of
in symmetrized form(21) and(23) or (26) and(27) with the  all its beadsjb) rotation of the trajectory around one of the
energy estimatof38'), (40) (i.e., the primitive estimator for coordinate axes(5) renumeration of particles which pro-
kinetic energy and averaging according to Eq€l1)—(43).  vides random walk inside classes. In the cas&ef3, for

V. MC PROCEDURES AND PROGRAMMING
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instance,.the clags ={12} is initially represented by qne Qf TABLE I. BF-PIMC data for a system dfl noninteracting iden-
permutatlons{l—Z, 3 the two others being accounted implic- tical particles 6p=1/2) in ad-dimensional harmonic field.
itly by the factorn{12} =3 (see Sec. Il C anfR]); renumera-

tion of particles enables us to include explicitly both other(g N=2, d=1, N,,c2=30 000
permutations—-1-3, 2 and (2-3, )—into averaging; and & N Kool (E)° (S(S+1))°  (sgn(W)).°
(6) cyclic renumeration of beads of a single randomly chosen

particle; it results in variation of the exchange factor. Appli- 0.05 3 1 41.17(22° 1.48(0.2  0.991(0.1)
cation of this algorithm seems to provide reliable sampling 0.25 3 1 8.34(1.7  1.40(0.5 0.951(0.7)
adequately covering significant areas of the space of states0.5 3 1 431(16 1.29(0.4 0.901 (0.9
Simulations of an electronic system in the Coulomb field 1 3 1 2.38(1.6) 1.06 (2.1) 0.779 (2.2
of nuclei creates a problem of potential singularity &t0. It 15 3 1 1.76(1.7) 0.80 (0.5 0.760(1.3
is resolved by smoothing of the electron-nucleus potential at2 5 1 1.39(3.3 0.56(3.2 0.657 (1.6
short distances which is made in the usual \&yg.,[17,18) 25 5 2 1.25(3.7) 0.39 (6.5 0.640 (2.2
substituting it either by a constad “shelf”) or by another 3 5 2 1.15(3.5 0.24 (12)  0.567 (4.0
function which is finite at the origin. In most cases we used 3 5 6 2 1.07(1.9 0.13(13) 0.614 (1.0
a parabolic smoothing 4 7 2 1.02(1.5  0.11(18 0.625(1.1)
5 7 2 0.99(1.7 0.08(25 0.671(1.0

o2 (b) N=2,d=3, Ny,c=10 000
—— for r> lo B n Kmax <E> <S(S+ 1)> (sgnW)) ;.
Ves(r) = r (79 005 3 1 1211733 1.50(0.1) 0.999 (0.1)
ar’+b for r<rg, 0.25 3 1 23.65(2.8 1.50 (0.3 0.958(0.1)
0.5 3 1 12.33(2.6) 1.49 (0.3 0.991(0.2
) ) ) ) 1 5 1 6.51(2.5 1.43(1.5 0.934(2.0
wherer is an electron-nucleus distanag, is the point of 15 5 2 5.13(5.4) 12931 081233
smooth “sewing together” the Coulomb function and the 6 > 4.08(8.0 1.05(4.9 0.656 (5.1)
parabola with parameters=1/2(e?/r 3), b= —3/2(e?/r,), . 5 3'71(8'2) 0.80 (5'4) 0.583 (5'8)
which provide continuity of the potential and its first deriva- - 5 3.39(5.9 0.65(12 0531 (4.4)

tive atry, b being the finite depth of Eq79) at the origin.

The value ofry should be chosen small enough to make 35 8 2 32173 041@1 049863
deviations of the results from those for the nonperturbed po(-c) N=3,d=1, Nyyc=100000
tential insignificant, but, at the same time, such that the N Kmax (E) (S(S+1))  (sgnW)).
“sinking” of the electron trajectory into a nucleus is pre- 3 1 59.14(L.9  2.19(0.9 0.945(1.0
vented. The choice of, is dependent on temperature, 925 3 1 12.842.)  1.97(L1)  0.788(1.1)
nucleus charge, and can be regulated by the number of bead$® 3 1 6.88(2.0 175(19 0638(2.)
and k. (see Sec. VI In test simulations for the ground 1 3 1 39930 1.24(27) 0.410(29
state of the hydrogen atom we usgg@=0.2—0.3 of the Bohr 1.5 3 2 3.16(5.9  1.06 (7.8 0.244(4.7)
radius. 2 5 2 2.84(5.6) 0.85(11) 0.158 (5.2
The created programs allow us to perform a variety of 25 5 2 2.71(16) 0.77 (220  0.105(6.1
simulations. It is possible to simulate systems with a differ- 3 6 2 2.54(21 0.68 (24  0.051 (15
ent number of particles in thé-dimensional harmonic field, 3.5 6 2 2.35(27) 0.036 (24
in a Coulomb field of a number of fixed nuclei, in cavities of 4 7 2 0.029(28)

different forms and size. As the input data, the following (d) N=3, d=3, Ny,c=30 000

7.06 (14) 1.35 (15) 0.275 (10
6.24(15) 1.25 (23 0.159 (14)
5.64(25) 1.17 (32 0.115 (20
2 5.14(31) 0.101 (26)

Parameters of the MC procedure are the followifigthe
number of beads; (2) the value ofk,,,,; (3) the number of
MC steps;(4) the length of the initial interval of the chain to
be truncated; angb) the maximum shifts for steps of each
kind (they are arranged so as to adjust the percentage oK, is the number of Monte Carlo steps gecomponent, number
successful attempts to optimal values of 40—60% of components isNN(L+ Kpay)-

It is also pOSSibIe to switch on or off: interaction betweenbmpu’[ parameterss is the inverse temperatufan (hw)_l units]; n
particles; the presence of a cavity with a different set of itsis the number of beads;,,y is the number of Fourier coefficients.
parametersthe external potentigl the exchange between coytput averages/E) is the energy(fiw units); (S(S+1)) is the
partiCleS. The integral in the pOtential part of the action Wa%quare of total spin{sgn(W)).. is the signW [see Egs(23) and
calculated at each step either by the simple trapezoidal rulg?), sec. Il C and Eq(43), Sec. Il A.

(program 1 or by the Simpson methotprogram 2 with  dn each column the relative error in percent is given in parentheses.

physical parameters are usétl) the space dimensiah; (2) B N Knax (E) (S(S+1))  {(sgnW)),
the number of quantum particlé§ (3) the number and po- o5 3 1 175.96(2.6) 2.25 (0.3 1.000 (0.2
sitions of nuclei(while simulating Coulombic systems(4) 025 3 1 35.35(3.0) 2.25(0.3 0.999 (0.1)
the value ofry in Vg (in the same ca3e(5) the oscillator 05 3 1 19.16(2.5) 2.22(0.9 0.964 (1.2
strengthBhiw (simulations in the oscillator fie)d(6) param- 1 5 1 9.95(4.1) 2.09(27 0.801 (4.2
eters of the cavitysimulations in a cavity and(7) tempera- ;5 ¢ 2 7.11(11) 170 (41 0.531 (9.9
ture. 6 2

7 2

7 2

8

3.5
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TABLE Il. BF-PIMC data for a system of identical particles in a three-dimensional Coulomb potential—a hydrogen
(sp=1/2) in a three-dimensional harmonic field at fixed 8% w atom, in this case we can reproduce its exact ground-state

as a function of the electrostatic interaction paramgteC/Cy, . energy and the distribution functio®) a particle in a one-
dimensional harmonic field.

@ N=2,x=1,n=3, Kpax=2, Nyc=30 00¢ We simulated an electron in the electrostatic potential

y (E) (Ep® (S(S+1))  (sgnW)). smoothed at short distances according to EZf) with

. ro=0.2-0.3R, (R,=0.53 A being the Bohr radiysIn most
84 2“2? gj’; gig 2‘71; 1'333 2(1)'2 g'ggg Egg of our runs we used temperattfe= 10 000 K (about 1 eV

: : : : ' ' ' : which is ten times less than the first gap in the hydrogen
0.8 6.84(1.6 3.30(2 145905  0.956(0.7 spectrum[(1-1/4) 13.6 eV=10.2 eV}. So we are sure to
12 7.24(3.0 3.32(4 1.472(04  0.967(0.9 obtain almost pure ground-state enefgy=—13.6 eV and
16 7.53(3.5  2.90(5  1.480(0.4 0.982(0.6)  the distribution function of the electron.
2.0 8.42(22 343(3 149002 0.992(0.2 Convergence of the calculated energy to the exact ground-
2.4 8.18(22 299(6  1497(0.2 0.995(0.3 state level is demonstrated in Fig. 1. Figufe)lshows how
2.8 8.96(1.8) 353(2)  1.499(0.2 0.997(0.2 the results attain the leved, in three series of BF-PIMC

(b) N=2,x=2,n=7, Knax=2, Nyc=30 000 calculations(T=10 000 K for different fixed numbers of
y (E) (Ew) (S(S+1))  (sgnW)).. beadsn with the increase . It is evident that fon= 70
0 4.09 (8.0) 2.08 (11) 1.140(4.9 0.719 (5.1 Kma=3 is already sufficient while fon=50 saturation is

0.2 4.70(4.2 2.07 (5) 1.232(3.0 0.726 (3.3 achieved only fork,,,,=4; for n=30 evenk,,,,=6 is yet
0.4 5.38(4.3 221 (100 1.352(3.5 0.822(3.9 insufficient. For a lower temperatu(&= 5000 K) dependen-

0.6 5.64(2.5) 2.03 (6) 1.364(2.3 0.822 (2.6 cies both fom= 30 and 50 are far from saturation within the
0.8 5.96 (4.2 1.86 (5) 1.415(2.3 0.877(2.9 range ofk,,=6. Analogous dependencies (E) on the
1 6.35(2.2) 1.84 (7) 1.450 (1.2)  0.923 (1.5 number of beads for different fixed values ok, [Fig.

1.2 6.80(2.89  1.91(9)  1.454(1.6) 0.930 (2.1 1(b)] are also instructive in making choice of the optimal set
1.4 6.97(1.6 1.77 (7) 1.475(0.9  0.960 (1.2) of parameters) and kpa. It is seen thakp,=3 provides

16 7.51(1.9 1.94 (7) 1.462 (1.5  0.936 (2.0 pract|cal_|dent|ty of_ results fon=40 while _for Kma=1 the

2 8.08 (1.4) 1.89 (6) 1.493 (0.5  0.988 (0.6) level Eq is not achieved even fan=80. Figure 2 demon- .
24 8.72(1.1) 1.89 (5) 1.491(07 0.982 (0.9 strates a good reproduction of the exact electron density

distribution  function in the ground state(p(r)

2.8 9.34 (1.4 1.92 (6) 1.493 (1.1 0.984 (1.5 _ 3 . . . .
32  989(1.0 194(5  1.501(0.)  1.000 (0.1) S_e(tlé ?Eg)uet’;%; [ﬁgr/fnﬁ]gt)e'rggffk“'a“ms with the optimal
() N=3,x=1,n=5, kya=1, Nyyc=30 000 Fi max:

igure 3 shows convergence of the calculated energy to
y (E) (B (S(S+1))  (sgnW)). the exact dependenc¢E,=1/2 cothf/2) with the increase of
0 9.93(4D  486(5 2.089 (2.7  0.801(1.2 Kmax for different reduced temperatures and the number of
0.4 11.37(4.9 527 () 2135(29 0.878(3.6 beads for the quantum oscillator. It is seen that lower tem-
0.8 12.02(1.7) 4.86 (4) 2.161(1.2 0914 (1.9 peratures and smaller number of beads require higher values
1.2 12.89(1.2 495(3  2.180(1.6 0.934(1.9 of kpnax fOr saturation to the desired level. The optimal com-
1.6 13.75(1.20  4.86 (4) 2.198 (1.0 0.949 (1.2 bination ofn andk,,,, for each inverse temperature can be
20  1473(1.7) 495(5  2212(1.0 0.962(1.3 readily determined from such plots.
24 15.54(0.8)  5.00 (2) 2.220(0.9 0.968(1.2 It should be noted again thdt,,=0 corresponds to
2.8 16.05(0.8  4.72(3) 2.240(0.) 0.989(0.3 “pure bead” method with the only difference that in this
case the potential source is homogeneously distributed along
; the interval between two beads while in the “initial” bead
Eame.as in Table I . method(as it is treated in most papérhe potential is cen-
C<Ek> Is average kinetic energy. L tered on beads. The continuous distribution variant is cer-
In each column the relative error in percent is given in parentheseﬁainly better for PIMC computations. Though even in this
case, as we can see in Figall n=70 is far from being
sufficient to reproduce correctly, for H atom. On the other

Test simulations presented in Sec. VI were performed orb"de pure Fourier” procedure means in our terms that

two computers PC 486DX/2-66. Typical calculation time pern: L Lookmg at Figs. {3} and ](b.) Itis not easy to imagine
each run, Figs. 1-8 and Tables | and II, ranged from 10—34ow great is the number of Fourier components which could

minutes for high temperature cases up to 3 to 4 hours foﬁr(\)l\v/;dse rir;r?tidoenqeudatﬁ] r?ﬁgltlmrnggtliitr:onf mgﬂ' tleic(i)’,’ a:n d
lowest temperatures studies. P

“pure Fourier” procedures as being the extreme cases of our
combined approach are far from the optimal simulation re-
gime.

3Meanings ofn, Knax, Nuc, (E), (S(S+1)), (sgn(W)), are the

preliminary tabulation of the sine function. The number of
integration points is bound with the value lof ..

VI. TEST RESULTS AND DISCUSSION

A. Single particle: an electron in the hydrogen atom
and a particle in the harmonic field B. Several noninteracting identical particles

To test the bead-Fourier PIMC method and to explore its with sp=1/2 in harmonic field

facilities we started with the simplest case of a single particle We use a favorable opportunity to check the quality of the
in an external field within two model$1) a charged particle developed procedures by comparison of simulation results
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for systems ofN=2 and 3 identical particles withp=1/2 in Analogous data foN= 3 are presented in Figs(l), 5(b),

a d-dimensional harmonic field with the exact dependencies(b). In this case the decrease(sfin(W)), with the growth

derived in Sec. I(Figs. 4-6, Table)l of Bis much strongefFig. 6b)]. Thus for3=3—-4 values of
Sim_ulation data foN=2 versus inverse temperature.for (sgn(W)), are already either equal to O(for d=3) or less

canonical energy and average square o_f the total spin akgan 0.1(for d=1). So forN=3 the sign problem already

prese;nted in Figs.(4) and _Sa)', corresponding exact depen- emerges. Nevertheless, dependencies op [Fig. 4(b)] are

dencies are shown by solid lines. For the energy we obsernve, . q,ced in BF-PIMC simulations almost as accurately as

almost perfect reproduction of the exact curves in a wid _ ;
= . . +
temperature range up to the ground-state levels for both defpr N=2[Fig. 4a)]. For (S(S+ 1)) accuracy of results are

; S X ood for B<2.5 (d=1) and forB<2 (d=3). In the latter
mensionsd=1 anq 3. FO'(S(Sfrl.» the comgdence IS als_o gase for ﬁigheﬁ(the e)rror becor‘;es éreéﬂe)e Table )l and
good though for higtB the statistical errors increase consid- we get a considerable scatter of MC results
erably (see Table). For (sgn\W)). [Fig. 6(a)] there exists |
no exact expression to be compared with simulation results.
The general feature of observed dependencies is their de-
crease with the increase ¢ though, even for highess,
values of(sgn(W)), do not fall lower than 0.6 fod=1 and The effect of gradual switching on of the electrostatic
0.4 ford=3. So, as it could be expected from general con+epulsion between particles in the above considered model
siderations, foN=2, sp=1/2 the sign problem does not yet (N identical particles in the harmonic figlds revealed in
arise. Figs. 7, 8, and Table II.

C. Several identical particles,sp=1/2,
with electrostatic repulsion in harmonic field
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The parameter which determines the ratio of electrostatiés being switched on. Correspondingly the total energy
interaction to the harmonic field intensityys- C,/C, where  (Table 1) monotonously increases while the kinetic energy
Cq—ezlA Ch,=mw?A?/2, A being the thermal wavelength. practically remains constant.

Finally we get

e? 1 VII. CONCLUDING REMARKS

Y e | | o
In this paper the combined, bead-Fourier, variant of the
PIMC method was formulated and relevant expressions for

wherex= Bhw, B=(kT) 1. So for each fixec andy (if e partition functions and canonical averages were derived both
and m are the charge and the mass of an elegtiwa can  for systems of distinguishable and identical particles. “Pure
obtain the temperature in Kelvin. bead” and “pure Fourier” methods are the extreme cases of

We performed three series of simulations each with fixedbur combined approach and appear to be nonoptimal com-
x and gradual increase of. Figures 7 and 8 demonstrate pared with the latter. In the case of identical particles forms
how (S(S+ 1)) and(sgn(W)), starting with their values for symmetrical with respect to exchange were introduced; other
a system of noninteracting particl€Eable I, Figs. 5 and)6  forms of the partition function with explicit averaging over
tend to their “classical” levels as the electrostatic repulsionthe square of the total spin or its projection were obtained as

FIG. 3. Average energy of a single particle in

.—F’f
0.3 / 4
h / one-dimensional harmonic field irE, units
7 (Ep=1/2 cothB/2 is the exact dependencas a
a1 J / .1 4 function of k,,,, for different values of inverse

<E>/f

reduced temperaturg and the number of beads
n; values of g8 andn: 1-10 (3), 2—5 (3), 3—1
—4&—3 1 (3), 4-5(6), 55 (10); (lines connecting points
—v—4 are to guide the eye

——95

—_—e—2
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15 L x - FIG. 4. B dependency of the average energy
T T T T I (hw units) for a system o noninteracting iden-
0 1 2 3 4 5 tical particles 6p=1/2) in d-dimensional har-
(a) B monic field. (@—N=2; (b)—N=3. 1-d=1;
2—d=3. Solid lines are exact dependencié8)
' ! ' for (a) and(77) for (b), Sec. IV. Horizontal lines
= 1 mark ground state€ =1, E35s=3 for (a) and
100 - * 24 E;;~25,Eg=55 for (b).
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w
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: \‘\K .
|
1 I ] T
0 i 2 3 4
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well. Relevant algorithms and computer programs, createdbtained in this work provide certain optimism in further
on the basis of the suggested approaches, were tested bitack on finite temperature simulations of systems including
comparing simulation results with exact data, both for aelectrons such as dense plasma, electrides, metallic micro-
single particle in the external fieldd atom, harmonic oscil- drops in zeolites, etc. The BF method can also be useful in
lator) and a model system &f= 2,3 identical noninteracting PIMC simulations of heavy quantum particle systems when
particles in the harmonic field. To carry out such comparisorthe exchange effects are usually neglected.

we derived exacB_ depen_den_cies _of canonical averages for ACKNOWLEDGMENTS

the system of noninteracting identical particles with spin in a . . ]
d-dimensional harmonic field. The comparison indicates that This work has been supported by the Russian Foundation
the developed approaches and simulation procedures giv§ Fundamental Research, Grant No. 96-03-33856a. We are
reliable results in a wides range up to rather low relative /S0 Very grateful to Professor Victor F. Ossipov for his aid
temperatures 3<3—4). Simulations with switching on of in the treatment of some mathematical issues in the Appen-

the electrostatic repulsion between particles in the harmonig'x'

field demonstrate gradual removal of the exchange effects. APPENDIX
The attractive feature of the developed BF-PIMC method is ) o ) ]
that for each simulated quantum system it is possible to de- 1. A single particle in one dimension

termine the optimal computational regime by an appropriate Our first step is to show that in the case of the one-
choice of the number of beads and valuégj,. The results dimensional harmonic potenti®l(x) = (mw?/2)x? the parti-
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tion function for a single particle, Eq.11), yields ~ mew? ) o
Z,=[2 sinB/2)]L. The easiest way to do so is to use ex- VIX(O]=B —— uni[X(£)1%=(Bhw)?X (&)
pression(11) in a purely Fourier form(i.e., the number of

beadsn=1) and

- dé.k 3(4( g) =X+ EkakSinkﬂg.

Its integration yields

=2

wn | @M (pho| T ES FA S S,
0 K X 2

where the potential now is where
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1 1 It can be transformed into
fk:f sinkmédé= — [1—(—1)4]. (A2)
0 km
From here to the conclusion of the Appendix we omit ex;{—(z (ak\/§k+xck)2+ ax?| |,
tildes overx anday and useg instead ofB#% w. The exponent K

term in (A1) now becomes

2
f
exp[—(Z (Bka§+52akfk2x)+ﬁ2x2) , a=p%>-2, CZ, CK:M. (A4)
k k \/Ek
where
5 5 So the partition function becomes a product of Gauss inte-
B + (k) grals, internal infinite productl, and external one-
By=——F——. (A3) . ) :
2 dimensional integral,

1 1 T 1 1
1'D‘L.. L] 1 7

0.9+ [ ] .

0.5 4 .

=sgn{i)z
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05 4 - .

0.4 -

(@ B FIG. 6. B dependency of the average sign of
W for the same systems as in Figs. 4, 5. Horizon-
I ' ' ' ' tal line in (b) marks the 0.1 level.
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dakeXF[ (a VB +xC)?]
BZ —-1/2 ﬁ
" lkm)? ) _(

~\sinhB
The infinite product here is reduced to a splfunction ac-

12
(A5)

cording to[19], Chap. 1, No. 1.431.2. Note also that the

result, Eq.(A5), is independent ok. So

= dx 5 1
l,= — exp—aXx’)=—. (AB)
— Ja
For a we have from Eqgs(A4), (A3), and(A2)
1,00 - o
] "L H &
[ |
0,95 4 n " © A 4 -
L] Lo®
0,90 .
+ 1 4 ©
n
0,35 - .
% 1 (o3 e)
¢ 0804 .
0,754 . 1
&4 © o 2
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FIG. 8.y dependency fofsgnW)).. , the system and designa-
tions are the same as in Fig. 7.
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- 1-73 :
i1 (2n—1)?m°[(2n—1)*m*+ B°]
WPRES S, i
|\ AP (2n- 1)2 =1 (2n—1)%7*+ B2
[ B
, 1 2 tam(i) B
=ﬁ_1—8 28 ag =2,8tan}‘(§) (A7)

(both sums are reduced according [tt9], Chap. 0, No
0.234.2 and Chap. 1, No 1.42)1.Zombiningl, andl, we
have finally forZ,

1/2
Z]_:IJ_IZ: B ) =

sinh(B)28 tan)’(

N

2. N identical particles

In the case olN identical particles §=1) we can start
with Egs.(15)—(19) using the pure Fourier form of E¢19)
(n=1) for Zp(P)

e orod-

+J01V[Xi(§)]d§) :

k 2
D )

=1

2%

ag+[x—P(x)1?

(A9)

After integration of the potential the exponent in E49)
finally transforms into

2
EXF{_E (; Bkai2k+[xi_P(Xi)]2+ﬁ_{X +[P(x)]?

+ X P(Xi)}+ 232

Xi; aikfk+[P(Xi)_xi]Ek aikgk]”-
(A10)
HereBk andf, are determined as in Eq&A3) and(A2) and

gi=J 6 sinkmédé=[—(—1)Vk].
For the identical permutation () it yields

exp{—E

( Zk (Byad + Bayf2x) + ﬂzxi2> .
(A11)

So Eq.(A9) becomes a product & identical integralgAl)
and we finally obtain
B
2 sml‘( 2)

In the general cas€A10) we again arrive at separation of
Z(P) into Gauss integralk, andl,

—N

Zp(WM=(Z)"= (A12)




1996
"1'_\‘[ I1 fm km d VB +C
Uitk \ o 27 aexfl — (i VBit Ci)] |,
(A13)
where now
Cik:ﬂz Xifk‘f'[P(Xi)_Xi]gk. (A14)

VBi

I, does not depend o@;, (and, hence, on coordinates)
and it yields theNth power of Eq.(A5)

B N/2
sinhB) '

It remains for us to calculate the integial

I]_:

dx;

|2—f1"[ —exp[ Z( 2 C2+[x—P(x)1?

2
+%{X?+[P(Xi)]2+xip(xi)}) : (A15)
Transformation of the sum ovéryields
_ 2
S =g s N ey
K K By
S %pr( S (fk—gogk}
X 3 By
(A16)
As far as gk—(fk 90?=(km) % and (g«
=(—1)*"Y(km) 2, the sum, Eq(A16), can be further trans-
formed as
2
2 2
5 Chm P DX POV G (e
2(_1)k+l
+2Xip(xi)2k (k7T)2[,82+(k'rr)2]
1
=27 [ +P(X)2]( 22k k2 2 W)
1 (_1)k+1 (_1)k+1
TAPON| T2 & T T T 2 B (k)2
=282 [x2+ P(x)?] 1 cothe—l *
i i 772 6 B 2,8

i 1 1
+ 2% P(X;)

1

The sums in Eq(A17) are reduced due {d 9] Chap. 0, No.

0.233.3; Chap. 1, No. 1.421.4; Chap. 0, No. 0.234.1; Chap.

1, No. 1.217.2. Substituting this into E¢A15) we finally
obtain forl,:
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N d :
Izzj H \/X; [{ Sinhg 2 > {[X3+P(x;)?]costB
—2xP(x)}- (A18)

Now for Z(P) we have

Zp(P)=14l3
B N/2
:<sinh,8) 2
1 N
e | I e
Xex;{ 2{C[y.+P(y.)2] 2y;P yi)}}-
(A19)
Here
112
C=coslpB, yi=($ Xi .

Factorl ,=(B/sinh AN in Eq. (A19) is “consumed” by the
new variabley; .

For each permutation the integiah(P), Eq. (A19), evi-
dently separates into a product over cycles,

Zo(P)=25(G)= [] (z,)%®

1=sv<N
So our aim is to calculate the integréA19) for a single

cycle of the lengthv which we designate a8,

1 v
zfpzfiljldyiex1<3{—[20<yi+y%+ +y7)

—2(y1Y2tYayst Y1y, Y.YD 1} (A20)

To calculate this integral we consider the bilinear form in the

exponent as a scalar product of vectgs andy, (YA,Y),
wherey=(y4,Y,,...,y,) and matrixA is

2C -1 0 ~1
-1 2c -1

A= (A21)
-1 -1 2C

Reducing the bilinear form in the expongi{20) to a qua-
dratic form we rewrite the integral, as

! H F dt;exy — \;t?] !
v mi=l — ! i \/)\l...)\y

= (DetA) 12 (A22)
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Here\; are the eigenvalues of the matAxand their product
equals to the determinant &f It is not difficult to show that
DetA can be expressed as

induction to be applied. Consider that this is true foiThen
it should be valid also for+1. We start with Eq(A25) for
v+1 and use Eq(A26)

DerA:Z(CAl/*l_AV*2_1)1 (AZS) Av+1 Av—l
A—ZZC— A ZGXQG"‘GXF(—IB)
whereA, is the determinant of the three-diagonal matrix v v
2¢c -1 0 - 0 B expr—exp —vp) _sinh(v+2)B
1 96 —1 - 0 expv+1)B—exd—(v+1)B] sin(v+1)B8°
: (A24) (A27)
o .- -+ =1 2C So Eq.(A26) is valid. Now as far as
For A, it is easy to obtain a recurrent formula A, A, 1 A, Ay
A, 18, By By BoTh
A,=2CA,_;—A,_,. (A25) v=18y-2 A1
The ratioA JA,_, satisfies the following relation: we apply Eq.(A26) and obtain forA,
A sinhv+1)B sinh(v+1)8
v A=—————= A28
A, 4 sinhwB (A26) sinhB (A28)

This can be readily verified for=2,3, etc. Its proof requires Substituting Eqs(A28) into (A23) we can write for DefA

sinlwB sinr(v—l),B_l B 2[ costB sinhwB— (sinhlwB coshB— coshvB sinhB) —sinhB]

Det A=2| coshpB

sinhB a sinhB sinhB
=2(coshvB—1)=4sintt(vB/2). (A29)
|
So finally we have Expression(A30) for Z, was obtained based on the initial
1 partition function(A9) in the pure Fourier form. It should be

pointed out that if we started with the bead-Fourier form
with n>1 it would result simply in substitution in EA30)

v by vn and 8 by B/n which naturally yields the same final
formula (A30).

In the d-dimensional case for, we get Eq.(A30) to the
power ofd.
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