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Bead-Fourier path-integral Monte Carlo method applied to systems of identical particles

P. N. Vorontsov-Velyaminov, M. O. Nesvit, and R. I. Gorbunov
Faculty of Physics, St. Petersburg State University, 198904, St. Petersburg, Russia

~Received 2 July 1996!

To make the path-integral Monte Carlo~PIMC! method more effective and practical in application to
systems of identical particles with strong interactions, we introduce a combined bead-Fourier~BF! PIMC
approach with the ordinary bead method and the Fourier PIMC method of Doll and Freeman@J. Chem. Phys.
80, 2239 ~1984!; 80, 5709 ~1984!# being its extreme cases. Optimal choice of the number of beads and of
Fourier components enables us to reproduce reliably the ground-state energy and electron density distribution
in the H atom as well as the exact data for the harmonic oscillator. Applying the BF method to systems of
identical particles we use the procedure of simultaneous accounting for all classes of permutations suggested in
the previous work@Phys. Rev. A48, 4075~1993!# with subsequent symmetrization of the exchange factor in
the weight function to make the sign problem milder. A procedure of random walk in the spin space enables
us to obtain spin-dependent averages. We derived exact partition functions and canonical averages for a model
system ofN noninteracting identical particles (N52,3,4,...) with the spin ~fermions or bosons! in a
d-dimensional harmonic field (d51,2,3) that provided a reliable test of the developed MC procedures. Simu-
lations forN52,3 reproduce well the exact dependencies. Further simulations showed how gradual switching
on of the electrostatic repulsion between particles in this system results in significant weakening of the
exchange effects.@S1063-651X~97!07601-0#

PACS number~s!: 02.70.Lq, 03.65.2w, 05.30.Fk
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I. INTRODUCTION

Development of path-integral Monte Carlo~PIMC! meth-
ods for finite-temperature simulations of quantum system
identical particles~particularly fermions! remains a challeng
ing problem of statistical mechanics@1–6#.

In a previous work@2# a PIMC method was suggested
simulate equilibrium properties of anN-electron system. The
main points of the approach were~1! the sum over permuta
tions was reduced to the sum over classes;~2! expressions
for distribution functions over absolute values of the to
spin and its projection were constructed, enabling calcu
tions of spin-dependent averages;~3! the partition function
was presented in a form in which contributions from
classes of permutations are accounted for in the weight fu
tion simultaneously, and hence there is no need to make
transitions between different permutations in the course
random walk in the coordinate space.

It should also be noted that continuous trajectories rep
senting each quantum particle in the PIMC method w
approximated in @2# by a finite number of vertices
~‘‘beads’’!; this approximation usually being called th
‘‘bead method’’~e.g.,@7,8#!. Meanwhile there exists anothe
means of presenting continuous trajectories of quantum
ticles, that is, the Fourier method@9,10# introduced into
PIMC simulations by Doll and Freeman@11# and recently
applied by Chakravarty@5# to simulate systems of identica
particles. In the Fourier PIMC method there is only o
‘‘bead’’ per particle and all the multitude of trajectories sta
ing and ending at this bead is presented by a Fourier se
with an infinite set of amplitudesak . The functional integral
representing the partition function is transformed, in t
case, into an integral over coordinates of this single bead
integrals over an infinite set of Fourier amplitudes. As lo
as the set ofak is infinite, the expression for the partitio
551063-651X/97/55~2!/1979~19!/$10.00
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function in the Fourier method is exact. The approximati
used implies neglecting all higher harmonics withk.kmax.
Hence, for each set of input physical parameters~e.g., tem-
perature, potential!, it is necessary to choose such a value
kmax that its further increase does not affect the output M
averages. The Fourier PIMC method was successfully u
in several recent works@7,8,12# and proved to be superior in
some aspects to the bead method~e.g., @8#!. It should be
pointed out, however, that the number of harmonics use
calculations even for systems of heavy particles with re
tively weak interactions and with no accounting for e
change attains several hundred@12#. This means, in particu-
lar, that the number of integration points in the potential p
of the action should be also several hundred. In the cas
electrons in strong external fields of nuclei, if the Four
method is used, a further increase ofkmax seems to be nec
essary, and that can make such calculations impractical
the other hand, our previous computational experience in
framework of the bead method has shown that for syste
with strong interactions~e.g., an electron in a hydroge
atom! we encounter rather slow convergence of results w
the number of beads is increased with some other unde
able effects. In order to make PIMC calculations practi
and more reliable in conditions of strong interactions,
develop a general~combined! method which unifies two ex-
isting approaches and includes them as its extreme ca
While in the bead method the number of variables isNnd, N
andd being the number of particles and dimensionality a
n the number of beads, in the Fourier method we ha
Nd(11kmax! variables. In the bead-Fourier variant of th
PIMC method it becomesNnd(11kmax! ~see Sec. II!. Al-
though the latter exceeds both of the former it appears p
sible to choose an optimal computational regime with re
tively small values ofkmax ~about 3–6! and simultaneously
an optimal number of beads in order to provide converge
1979 © 1997 The American Physical Society



n
he

o
re
rt
u-
ng
n
us
in

g
nd

.
t
ro
re
av

l
e
h
ar
a
ar

-
s

a-

n
to

nd
h

es

nd
rt-

sion

1980 55VORONTSOV-VELYAMINOV, NESVIT, AND GORBUNOV
and good accuracy of results at modest computation expe
It would also be clear from our test calculations that t
extreme regimes~pure bead or pure Fourier procedures! are
not the optimal ones.

Formulation of the suggested bead-Fourier PIMC meth
for systems of distinguishable and identical particles is p
sented in Sec. II. In this section we also construct the pa
tion function in a form symmetrical with respect to perm
tations. This makes contributions of all beads to excha
equal and thus lowers computational errors. Finally still a
other form of the partition function is obtained, enabling
to formulate a MC procedure with additional random walk
the space of total spin or its projection. This provides
straightforward means to calculate spin-dependent avera
In Sec. III we obtain the bead-Fourier forms for kinetic a
potential energy estimators inkmax approximation. For ki-
netic energy both ‘‘primitive’’ and virial forms are obtained
In order to test computer algorithms created according
schemes adopted in Secs. II and III, it is desirable to rep
duce existing exact results for model systems. Exact exp
sions for the partition function, internal energy, and the
erage of the square of total spin for a system ofN
noninteracting identical particles in ad-dimensional externa
harmonic field, are obtained in Sec. IV. In Sec. V we d
scribe main features of algorithms and programming. T
results illustrating feasibility of the suggested method
presented in Sec. VI. Final remarks and conclusions
made in Sec. VII. Some relevant analytical calculations
carried out in the Appendix.

II. BEAD-FOURIER PATH-INTEGRAL
MONTE CARLO METHOD

A. A single particle in one dimension

We start with a single quantum particle of massm in
one-dimensional external potentialV(x) at inverse tempera
tureb. The relevant partition function can be expressed a
functional integral@9,13#

Z5Tr r5 R D„x~u!…exp@2S„x~u!…#, ~1!

where rD„x(u)… denotes integration over all closed tr
jectories x(u) „x(0)5x(b\)…, and S„x(u)…
51/\*0

b\$[mẋ(u)2/2]1V„x(u)…%du—action on Euclidean
time u. Equation~1! can also be expressed as

Z5E dxE
x~0!5x

x~b\!5x
D„x~u!…exp@2S„x~u!…#, ~2!

with the external one-dimensional ordinary integratio
and the internal functional integral over all closed trajec
ries with the initial and final points at fixedx. This expres-
sion was the basis for the Fourier PIMC method of Doll a
Freeman@11#. To create the combined method we take t
next step: we divide the whole ‘‘time’’ interval@0,b\# into n
parts~we shall consider them equal, though it is not nec
sary! and introduce the following notations:u150,
u25[b\/n],..., uj5[( j21)b\/n],..., un5[(n21)b\/
n], un115b\; Du5[b\/n][«. Let also x(u1)5x1 ,
se.
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x(u2)5x2 ,..., x(uj )5xj ,..., x(un)5xn , x(un11)5x1 .
Then the partition functionZ can be expressed as follows:

Z5E dx1 ...xnE
x1

x2
D„x~u!…E

x2

x3
D„x~u!…...E

xn

x1
D„x~u!…

3expH 2
1

\ (
j51

n E
uj

uj11Fmẋ~u!2

2
1V„x~u!…GduJ , ~3!

where*dx1 ...xn are ordinary one-dimensional integrals, a
*xj
xj11D„x(u)… are functional integrals over trajectories sta

ing atxj and ending atxj11. Now introducing a designation

Sj„x~u!…5
1

\ E
uj

uj11Fmẋ~u!2

2
1V„x~u!…Gdu,

we can rewrite Eq.~3! as

Z5E )
1< j<n

S dxjE
xj

xj11
D„x~u!…exp@2Sj„x~u!…# D ~4!

with the conditionxn115x1 .
Following @10# for each intervalxj ,xj11 we consider:

xj (u)5xc j(u)1yj (u), where xc j(u)5xj1(xj112xj )(u
2uj )/(uj112uj ) is a linear function,xc j(uj )5xj , xc j(uj11)
5xj11, andyj (uj )5yj (uj11)50. So the componentyj (u)
for each interval can be presented as a Fourier sine expan

yj~u!5 (
1<k,`

ajk sin
kp~u2uj !

uj112uj
.

The kinetic energy term in the actionSj„x(u)…, can be ex-
pressed explicitly. Using the designation«[uj112uj , we
get the derivativeẋ

ẋ5
~xj112xj !

«
1(

k
ajkFkp

« Gcoskp~u2uj !

«
. ~5!

Introduce a new variable j5(u2uj )/«, so that
u5uj→j50, u5uj11→j51, du5«dj, and *uj

uj11du

transforms into«* 0
1dj. For ẋ2 we now obtain

ẋ~u!25
~xj112xj !

2

«2
12

xj112xj
« (

k
ajkFkp

« Gcoskpj

1S (
k
ajkFkp

« Gcoskpj D 2. ~6!

As long as*0
1 coskpj dj50 for k51,2,... thekinetic part

of the action on thej th interval in Eq.~4! is
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1

\ E
uj

uj11 mẋ2

2
du5

m«

2\ E
0

1

ẋ~j!2dj

5
m

2\ F ~xj112xj !
2

«
1(

k
~kp!2

ajk
2

2« G
5~ x̃ j112 x̃ j !

21(
k

~kp!2

2
ã jk

2 . ~7!

In the latter expression we introduced dimensionless coo
nates and Fourier amplitudes:x̃[x/unit, ã[a/unit; where
unit [ALn

2/p; L n
25(L2/n); L[A(bh2)/(2pm), andL is

the thermal de Broglie wavelength.
The potential part of the action now can be written in n

variables and units as

1

\ E
uj

uj11
V„x~u!…du5

b

n E
0

1

V@xj~j!#dj[E
0

1

Ṽ@ x̃ j~j!#dj,

~8!

where Ṽ( x̃)5(b/n)V~unit•x̃!; x̃ j (j)5 x̃ j1( x̃ j112 x̃ j )j
1(kãjk sinkpj. As a result the actionSj is

Sj~$ã jk%!5~ x̃ j112 x̃ j !
21(

k

~kp!2

2
ã jk

2 1E
0

1

Ṽ@ x̃ j~j!#dj.

~9!

Now again following@10# we can pass from the functiona
integral over trajectories*xj

xj11D„x(u)… to the integral over

Fourier coefficientsajk

E
xj

xj11
D„x~u!…exp@2Sj„x~u!…#5E Jj)

k
dãjk

3exp@2Sj~$ã jk%!#. ~10!

Here Jj5(1/Ln)Pk[(pk/&)(1/Ln)] is the Jacobian of the
transformation. As a result the partition function~4! becomes

Z5E dt̃e2H,

H5 (
1< j<n

F ~ x̃ j112 x̃ j !
21(

k

~kp!2

2
ã jk

2

1E
0

1

Ṽ@ x̃ j~j!#djG ~11!

and

dt̃5 )
1< j<n

S dx̃jAp
)
k51

`
pk

A2p
dãjkD .

H is an effective Hamiltonian.

B. N distinguishable particles in three dimensions

The bead-Fourier form of the partition function for
three-dimensional system ofN distinguishable particles ca
be obtained in a way similar to the previous result, Eq.~11!.
Starting with the procedure described in Sec. II A we obt
i-

n

3N-dimensional analogies of Eqs.~3! and~4!. Further trans-
formations yieldZ in the final form

ZD5E dt̃e2H,

H5 (
1< j<n

F ~ q̃ j112q̃ j !
21(

k

~kp!2

2
Ã jk

2

1E
0

1

Ṽ@ q̃ j~j!#dj, ~12!

with the conditionq̃n115q̃1 . The designations in Eq.~12!
are

q̃ j5~ ...,rW i j ,...!, rW i j5~ x̃i1 j ,x̃i2 j ,x̃i3 j !,

and

Ãjk5~ ...,ãis jk ,...! at i51,...,N; s51,2,3.

So that

q̃ j~j!5@ ...,x̃is j~j!,...#;

x̃is j~j!5 x̃is j~12j!1 x̃is~ j11!j1(kãis jk sin kpj.

And

dt̃5 )
1< j<n
1< i<N
s51,2,3

F 1

Ap
dx̃is j)

k

kp

A2p
dãis jkG .

Both Eqs. ~11! and ~12! are exact expressions for an
finite number of beadsn as long as the set ofk is infinite. In
both expressions the exp factor can be treated as an ‘‘ef
tive Hamiltonian’’ of some ‘‘classical’’ system. It is also
evident that expressions~11! and ~12! include the ‘‘pure
Fourier’’ method of Doll and Freeman@11# and the ‘‘pure
bead’’ method as the extreme cases. In the c
n51P1< j<ndxj→dx, (1< j<n(xj112xj )

2 disappears in Eq.
~11! @in Eq. ~12! analogous changes occur#, and we come to
the partition functionZ in pure Fourier form@11#. On the
other hand, if we removePkdãk and (k in Eqs. ~11! and
~12!, i.e., putkmax50 we come to the vertex~bead! method.
In the latter case the only difference is that in a pure be
method the potential centers are located on beads, where
our extreme case the potential is uniformly spread along
straight lines between beads. This allows us to get a be
estimation for the potential energy than in a pure be
method.

C. N identical particles in three dimensions

Now we consider a system ofN indistinguishable par-
ticles ~fermions or bosons! in three-dimensional space. Ex
pressing the density matrixr (A,S) as an antisymmetric~sym-
metric! sum of density matrices for a system ofN
distinguishable particlesr (D) we get the following expres-
sion for the partition function@13#:
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Z5Tr~r~A,S!!

5
1

N! (
$P%

j@P#E dx1 ...dxNr~D !
„x1 ...xN ;P~x1!...P~xN!….

~13!

Here xi is a set of space coordinates and spin variablesxi
5(rW,s), and*dx5(s*drW, j equals to21 for fermions and
1 for bosons, and [P]—parity of the permutationP. Below
we shall consider mostly fermions~s561/2!. The density
matrix r (D) in Eq. ~13! for the spin-independent Hamiltonia
can be presented asr (D)5r0

(D)
„rW1 ,...,rWN ,P(rW1),...,

P(rWN)…rsp(P), wherer 0
(D) is its coordinate contribution an

rsp(P) is its spin part for permutationP

rsp~P!5d„s1 ,P~s1!…...d„sN ,P~sN!…. ~14!

Substituting Eq.~14! into Eq. ~13! we obtain, for the parti-
tion functionZ,

Z5
1

N! (
$P%

j@P#K~P!ZD~P!. ~15!

Here K(P)5(s1 ...sN561/2d„s1 ,P(s1)…...d„sN ,P(sN)… is
the spin contribution to the partition function andZD(P) is
the coordinate part of the partition function for the permu
tion P

ZD~P!5E drW1 ...drWNr0
~D !@rW1 ...rWN ,P~rW1!...P~rWN!#

5E dqr0
~D !
„q,P~q!…. ~16!

In the latter form we used the designationq5(rW1 ,...,rWN)
introduced earlier in Sec. II B.

Following @2# we rewrite the partition functionZ ~15! as a
sum over classes of permutations$G%. Then j@P#→j@G#,
K(P)⇒K(G)52(nCn(G), where Cn(G) is the number of
cycles of lengthn in the given classG, so that(nCn(G) is
the total number of cycles in the classG; ZD(P)5ZD(G),
since the value of an integral over all coordinates depe
only on the cycle structure of the permutation. This way
partition function becomes

Z5
1

N! (
G

j@G#K~G!n~G!ZD~G!5(
G

aGZD~G!, ~17!

wheren(G) is the number of permutations in the given cla
G @13,2#. In the last form we introduced a designation

aG5j@G#K~G!
n~G!

N!
. ~18!

The bead-Fourier form ofZD(G) can be readily obtained
from Eq. ~12!

ZD~G!5E dt̃«2HG, ~19!

where
-

s
e

HG5 (
1< j<n

~G!F ~ q̃ j112q̃ j !
21(

k

~kp!2

2
Ã jk

2

1E
0

1

Ṽ„q̃ j~j!…dj.

( (G) in Eq. ~19! means the sum over beads on conditi
that q̃n115PG(q̃1), this being the only difference betwee
Eqs.~12! and ~19!.

Now following @2# we change the order of the summatio
over classes and the integration over coordinates and Fo
coefficients in Eqs.~17!–~19! and we distinguish as a facto
a sum of exponents containingq̃n and q̃n115PG(q̃1). We
obtain the expression

Z5(
G

aGZD~G!

5E dt̃ expH 2 (
1< j<n21

F ~ q̃ j112q̃ j !
21(

k

~kp!2

2
Ã jk

2

1E
0

1

Ṽ„q̃ j~j!…djG J (
G

aGexpH 2F „q̃n2PG~ q̃1!…
2

1(
k

~kp!2

2
Ã nk

2 1E
0

1

Ṽ„q̃ n
G~j!…G J dj, ~20!

whereq̃ n
G(j)5q̃n(12j)1PG(q̃1)j1(kÃnk sinkpj.

D. Symmetrization of Z

Now we subtract and add in the exponent in Eq.~20!
the following term (q̃n2q̃1)

21Sk[(kp)2/2]Ã nk
2

1*Ṽ„q̃n(j)…dj. So we get

Z5E dt̃e2HW, ~21!

whereH is determined by Eq.~12! and

W5(
G

aG«2DHG, ~22!

where

DHG5HG2H

5„q̃n2PG~ q̃1!…
22~ q̃n2q̃1!

2

1E
0

1

Ṽ„q̃ n
G~j!…dj 2E

0

1

Ṽ„q̃n~j!…dj .

Then we multiply and divide the expression~21! by n and
rewrite it as 1/n( l51

n . After that we renumerate indices o
the beadsj in each next integral of the sum shifting them b
unity with respect to the previous one. Bothdt̃ andH, being
a cyclic product and a sum, remain unchanged. Gathering
the terms in the sum under common integral*dt̃ we take
into account thate2H is the common term. So finally we
obtain again expression~21! with another ~symmetrical!
form ofW
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W5(
G

aG
n (

1< j<n
e2DHG

~ j !
. ~23!

Here

DHG
~ j !5„q̃ j2PG~ q̃ j11!…2~ q̃ j2q̃ j11!

21E
0

1

Ṽ„q̃ j
G~j!…dj

2E
0

1

Ṽ„q̃ j~j!…dj .

Expression~21!, for the partition function with Eq.~23! for
W, is an exact one in which all beads, 1< j<n, make an
equal contribution to the exchange between particles.

E. Forms of Z with explicit averaging over total spin
or over its projection

The coefficientsaG can be presented in one of the follow
ing forms @2#:

aG5(
S

aGS, aGS5sgn~G!~2S11!V~S,G!
n~G!

N!
,

~24!

aG5(
m

aGm , aGm5sgn~G!v~m,G!
n~G!

N!
, ~25!

whereV(S,G) is the distribution over values of the tota
spinS„0(1/2)<S<N/2… andv(m,G) is the spin-projection
distribution (2N/2<m<N/2) for the classG @2#. So we can
rewrite Eq.~21! in the following form:

Z5(
S

ZS5(
m

Zm , ~26!

where

ZS5E dt̃e2HWS , WS5(
G

aGS
n (

1< j<n
e2DHG

~ j !
~27!

and

Zm5E dt̃e2HWm , Wm5(
G

aGm
n (

1< j<n
e2DHG

~ j !
. ~28!

This representation of the partition function allows us
make a random walk over the values of the total spin or
projection and calculate corresponding spin-dependent a
ages, e.g.,̂S(S11)&

^S~S11!&5
1

Z (
S

S~S11!ZS . ~29!

III. ENERGY ESTIMATORS
IN THE BEAD-FOURIER FORM

A. The primitive estimator

The so-called primitive estimator for the internal ener
can be obtained from the Gibbs-Helmholtz equation~e.g.,
@14#!
s
er-

E5
]

]b
~bF !52

] lnZ~b!

]b
, ~30!

whereZ(b) is the canonical partition function. In the sim
plest case~one particle in one dimension! we substitute Eq.
~11! for Z into Eq.~30!. Before differentiation thek approxi-
mation should be introduced, i.e., we must hold only fi
terms with 1<k<kmax in the infinite sums and products ove
k. Then Eq.~30! yields

E5^eK&1^eP&, ~31!

where

eK5
n

2
~11kmax!

1

b
2

a

b
,

a5(
j51

n F ~ x̃ j112 x̃ j !
21 (

k51

kmax ~kp!2

2
ã jk
2 G , ~32!

eP5
1

n (
j51

n E
0

1

V„xj~j!…dj5
1

b (
j51

n E
0

1

Ṽ„x̃ j~j!…dj.
~33!

Here, and below,eK and eP are estimators of kinetic and
potential energies. Note thata1beP5H for H ~11!. x̃ j (j) is
determined in Eq.~8! with (k limited by kmax. Averaging
^O& in Eq. ~31! implies

^O&5Z21E dt̃Oe2H, ~34!

whereZ andH are determined in Eq.~11!.
In the case of a three-dimensional system ofN distin-

guishableparticles we substitute Eq.~12! into Eq. ~30! and
we again obtain Eq.~31! with

eK5
3Nn

2
~11kmax!

1

b
2

a

b
,

a5(
j51

n F ~ q̃ j112q̃ j !
21 (

k51

kmax ~kp!2

2
Ãjk
2 G , ~328!

eP5
1

n (
j51

n E
0

1

V„qj~j!…dj5
1

b (
j51

n E
0

1

Ṽ„q̃ j~j!…dj.
~338!

Averaging ^O& means again Eq.~34!, now with Z andH
from Eq. ~12!, H5a1beP with a and eP from Eqs.~328!
and~338!; q̃ j , q̃ j (j) andÃjk are the 3N-dimensional vectors
introduced in Sec. II B, and(k in q̃ j (j) being limited by
kmax.

Now for the three-dimensional system ofN identicalpar-
ticles ~fermions! we start with the partition functions~17!
and~19!. Differentiation~30! now yields again Eq.~31! with
Eq. ~328! for eK and with ^a& and ^eP&, now determined by

^a&5Z21(
G

aGE dt̃aGe
2HG, ~35!



a

ion
r
o

ght

ed

or
ing

1984 55VORONTSOV-VELYAMINOV, NESVIT, AND GORBUNOV
^eP&5Z21(
G

aGE dt̃ePGe
2HG,

whereZ5(GaG*dt̃e2HG. Here

aG5(
j51

n

~G!F ~ q̃ j112q̃ j !
21 (

k51

kmax ~kp!2

2
Ã jk

2 G , ~36!

ePG5
1

n (
j51

n

~G!E
0

1

V„qj~j!…dj5
1

b (
j51

n

~G!E
0

1

Ṽ„q̃ j~j!…dj

~37!

HG ~19! andHG5aG1bePG . The meaning of( (G) is the
same as in Eq.~19!. ForH ~12!, HG ~19!, a ~32a!, aG ~36!,
eP ~338!, ePG ~37! we can write

HG5H1DHG , aG5a1DaG , ePG5eP1DePG ,

where

DaG5@ q̃n2PG~ q̃1!#
22~ q̃n2q̃1!

2,

DePG5E
0

1

V@qn
G~j!#dj2E

0

1

V@qn~j!#dj,

DHG5DaG1bDePG .

Then Eq.~30! yields

E5^eK&1^DeK
exch&1^eP&1^DeP

exch&, ~38!

whereeK andeP are determined as before by Eqs.~32a! and
~33a!; and forDeK

exch, DeP
exch we have

DeK
exch5~bW!21(

G
aGDaGe

2DHG, ~39!

DeP
exch5W21(

G
aGDePGe

2DHG, W5(
G

aGe
2DHG.

~40!

Averaging^O& in Eq. ~38! implies

^O&5Z21E dt̃Oe2HW, Z5E dt̃e2HW. ~41!

The average~38! can also be presented in symmetric
form

E5^eK&1^DeKs
exch&1^eP&1^DePs

exch& ~388!

with eK and eP determined, as in Eq.~38!, by Eqs.~328!,
~338!, and where

DeKs
exch5~bW!21(

G
aG

1

n (
1< j<n

DaG
~ j !e2DHG

~ j !
, ~398!

DePs
exch5W21(

G
aG

1

n (
1< j<n

DePG
~ j ! e2DHG

~ j !
l

W5(
G

aG
1

n (
1< j<n

e2DHG~ j ! ~408!

with

DaG
~ j !5@ q̃ j2PG~ q̃ j11!#

22~ q̃ j2q̃ j11!
2,

DePG
~ j ! 5E

0

1

V@qj
G~j!#dj2E

0

1

V@qj~j!#dj,

and

DHG
~ j !5DaG

~ j !1bDePG
~ j ! .

W andDH G
( j ) were already determined by Eq.~23! in Sec.

II C.
DeKs

exchandDePs
exchare expressed in Eqs.~398! and~408! in

symmetrized form~see Sec. II C!. Averaging ^O& in this
case implies Eq.~41! with W from Eq. ~408! @see also Eqs.
~21!, ~22!, ~23!#.

In the last two cases the integrand in the partition funct
Z ~21! includes, in addition to the positive weight facto
e2H, the factorW which can change its sign. In order t
apply MC important sampling~41! should be transformed
into an expression including averages over positive wei
function

^O&5Z21E dt̃OWe2H5

E dt̃O sgn~W!uWue2H

E dt̃ sgn~W!uWue2H

3

E dt̃ uWue2H

E dt̃ uWue2H

5
^O sgn~W!&1

^sgn~W!&1
. ~42!

Here ^~•••!&1 means

^~••• !&15

E dt̃~ ••• !uWue2H

E dt̃uWue2H

, ~43!

an averaging procedure with non-negative normaliz
weight function uWue2H/*dt̃ uWue2H which now can be
carried out within Metropolis procedure.

B. Virial estimator

In the same way as it has been done in@14# in ‘‘pure
bead’’ PIMC method we can construct a virial estimator f
the kinetic energy within the bead-Fourier approach. Start
again with the caseN51; d51 we introduce the following
linear operatorL̂:

L̂5(
j51

n S x̃ j ]

] x̃ j
1 (

k51

kmax

ã jk
]

]ã jk
D . ~44!

Applying the L̂ operator toH from Eq. ~11! we construct
canonical averagê L̂H& according to Eq.~34!. Each of
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n(11kmax! terms in the sum L̂, e.g., x̃ j (]/] x̃ j ), or
ã jk(]/]ã jk), being applied toH with subsequent averagin
~34! yields 1 @14#. So we get

^L̂H&5n~11kmax!. ~45!

As far as forH ~11! we haveH5a1beP , wherea andeP
are Eqs.~32! and ~33!, we can write

^L̂H&5^L̂a&1b^L̂eP&5n~11kmax!. ~46!

Note thata ~32! is a quadratic form of Fourier amplitude
ã jk and a cyclic sum of terms (x̃ j112 x̃ j )

2. So it provides
L̂a52a and Eq.~46! yields

2^a&1b^L̂eP&5n~11kmax!,

or

1

2
^L̂eP&5

n

2b
~11kmax!2

1

b
^a&. ~47!

The right side of Eq.~47! is the kinetic energy@see Eqs.~31!
and ~32!#. So it can be now expressed as an average of
virial estimatore K

(v)

^eK
~v !&5K 12 L̂ePL 5K (

j51

n S x̃ j ]eP
] x̃ j

1 (
k51

kmax

ã jk
]eP
]ã jk

D L . ~48!

For N distinguishable particles,d53, with similar steps we
can arrive at

^eK
~v !&5

1

2
^L̂eP&, L̂5(

j51

n S q̃ j ]

]q̃ j
1 (

k51

kmax

Ãjk

]

]Ãjk
D .
~49!

And finally we consider the case ofN indistinguishable
particles,d53. Using the expression for partition function
~17!, ~19! we can introduceL̂H with L̂ ~49! and the average
^L̂H&

^L̂H&5Z21(
G

aGE dt̃~ L̂HG!e2HG

53Nn~11kmax!

(
G

aGE dt̃e2HG

(
G

aGZD~G!

53Nn~11kmax!. ~50!

HereHG is determined by Eq.~19!, aG is Eq. ~36!, ePG is
Eq. ~37!, andHG5aG1bePG ~see Sec. III A!.

As far asH5a1beP with Eqs.~32a! and~33a! for a and
eP

^L̂H&5^L̂a&1b^L̂eP&53Nn~11kmax!. ~51!

Now as far asaG in Eq. ~36! is again a quadratic form o
Fourier amplitudesã jk and a cyclic sum of terms of the typ
( x̃ j112 x̃ j )

2 we can show again thatL̂a52a. If we substi-
e

tute this into Eq.~51!, take into account Eqs.~35!, ~328!, and
~338!, we again obtain the virial estimator for the kinet
energye K

(v)

eK
~v !5 1

2 L̂eP ~52!

with L̂ from Eq. ~49!.

IV. EXACT RESULTS FOR A SYSTEM OF N
NONINTERACTING IDENTICAL PARTICLES
IN D-DIMENSIONAL OSCILLATOR FIELD

An exact expression of partition function for a system
N noninteracting spinless quantum identical particles in
one-dimensional (d51) oscillator field was derived in@15#

ZN
~A,S!5F )

1< l<N
S 2 sinh lb2 D e6@N~N21!/4#bG21

, ~53!

whereA ~antisymmetrical! and the upper sign refer to spin
less fermions~‘‘polarized electrons’’! and S ~symmetrical!
and the lower sign refer to bosons. The corresponding
pression forN distinguishable particles is well known

ZN
~D !5~Z1!

N5S 2 sinhb

2 D 2N

, ~54!

whereZ1 is a single particle canonical partition function~in
all that follows we useb instead ofb\v, i.e., consider\5v
51!. Expression~53! for ZN

(A,S) is easily derived ifd51,
sp50 @15# though its obtaining in similar cases ford52,3
and sp51/2 is not straightforward. The analysis of the
cases that follows is based on the general expression
ZN
(A,S) ~15!, ~17!

ZN
~A,S!5

1

N! (
P

j@P#K~P!ZN
~D !~P!

5
1

N! (
G

j@G#K~G!n~G!ZN
~D !~G!. ~55!

To be specific we start withN52

Z2
~A,S!5 1

2 @K~12!Z2
~D !~12!7K~2!Z2

~D !~2!#. ~56!

Here two classes of permutations forN52 are designated a
12 and 2 andn(12)5n(2)51 @16#.

For ad-dimensional harmonic oscillator field~56! yields

Z2
~A,S!~d,sp!5 1

2 @K~12!~Z1
2!d7K~2!~Z2!

d#, ~57!

whereZ1 is the partition function of a single particle in
one-dimensional case andZ2 is the one for a cycle involving
two particles~d51, sp50!. They are determined by th
general expression forZn derived in the Appendix, Eq
~A30!

Zn5
1

2 sinh
nb

2

. ~58!
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For sp50 K(G)51 for all G; for sp51/2 K(12)54,
K(2)52 @2#. Now using Eq.~58! we present Eq.~57! in the
following form:

Z2
~A,S!~d,sp!5@Z2

~A,S!#df 2~d,sp!, ~59!

whereZ 2
(A,S) is a one-dimensional partition function,sp50,

determined by Eq.~53! for N52 and

f 2~d,sp!5
1

2 FK~12!S 2 sinhbe6~b/2!

2 sinh
b

2
D d

7K~2!S 2 sinhb

2
e6@b/2#D dG . ~60!

For the antisymmetrical case andsp50 f 2(d,sp) can be
presented as

f 2~d,sp50!5 1
2 @~eb11!d2~eb21!d#. ~61!

So the corresponding partition function is

Z2
~A!~d,sp50!5~Z2

~A!!d3H 1 for d51

2eb for d52

3e2b11 for d53.

~62!

Similarly to Eq. ~61! for the symmetrical case (sp50) we
get

f 2~d,sp50!5 1
2 @~11e2b!d1~12e2b!d# ~63!

and

Z2
~S!~d,sp50!5~Z2

~S!!d3H 1 for d51

11e22b for d52

113e22b for d53.
~64!

It should be noted that ford51 in both cases we really
obtain Eq.~53! for N52.

Finally for fermions withsp51/2 we have

f 2S d,sp5
1

2D5 1
2 @4~eb11!d22~eb21!d# ~65!

and

Z2
~A!S d,sp5

1

2D5~Z2
~A!!d

3H eb13 for d51

e2b16eb11 for d52

e3b19e2b13eb13 for d53.

~66!

In all these cases the energy can be easily derived f
E52(]/]b)~ln Z!. For antisymmetrical cases we can wri
~in \v units!
m

E2
~A!~d,sp50!5dE2

~A!~d51, sp50!

2H 0 for d51

1 for d52

6e2b

3e2b11
for d53

~67!

and

E2
~A!S d,sp5

1

2D5dE2
~A!~d51, sp50!

25
eb

eb13
for d51

2e2b16eb

e2b16eb11
for d52

3e3b118e2b13eb

e3b19e2b13eb13
for d53,

~68!

whereE 2
(A)(d51, sp50) is the energy of two particles with

sp50 in a one-dimensional oscillator field obtained fro
Eq. ~53!

E2
~A!~d51, sp50!5 1

2 coth
b

2
1cothb1 1

2 . ~69!

For a system of fermions withsp51/2 we can calculate
the value of the square of the total spin^S(S11)&. Using
Eq. ~29! and the coefficients from@2# we write

^S~S11!&~d!

5

1

2
@0313„1~Z1

2!d11~Z2!
d
…11323„3~Z1

2!d23~Z2!
d
…#

Z2S d,sp5
1

2D
.

~70!

Using Eqs.~62! and ~66! we get

^S~S11!&55
6

eb13
for d51

12eb

e2b16eb11
for d52

6~3e2b11!

e3b19e2b13eb13
for d53.

~71!

As should be expected, in all cases^S(S11)& tends to zero
for b→` ~spin compensation at low temperatures! and to
233

4 for b→0 ~a system of two independent ‘‘classical
electrons!.

For a system of three particles (N53) the antisymmetri-
cal partition function~55! can be represented similarly to Eq
~57! as
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Z3
~A!5

1

3!
@K~13!~Z1

3!d23K~12!~Z1Z2!
d12K~3!~Z3!

d#.

~72!

HereK3(1
3)58,K3(12)54, andK3(3)52 for sp51/2 @2#.

Now, as in the previous case, we rewrite Eq.~72! in the form

Z3
~A!~d,sp!5@Z3

~A!#df 3~d,sp!, ~73!

whereZ 3
(A) is Eq. ~53! for N53 and f 3(d,sp) can be re-

duced@similarly to Eqs.~61! and ~65!# to
ne

e
n

n

f 3~d,sp!5 1
6 @~8!„~eb11!~e2b1eb11!…d23~4!~e3b21!d

12~2!~e3b2e2b2eb11!d#. ~74!

Here the additional coefficients 8, 4, and 2 are present o
in the casesp51/2. Finally for the partition function we
obtain, forsp50
e

Z3
~A!~d,sp50!5@Z3

~A!#d3H 1 for d51

e4b14e3b1e2b for d52

3e7b110e6b16e5b16e4b17e3b13e2b11 for d53

~75!

and forsp51/2

Z3
~A!S d,sp5

1

2D5@Z3
~A!#d3H 2~e2b1eb12! for d51

2eb~2e4b15e3b110e2b15eb12! for d52

2~3e8b112e7b129e6b130e5b130e4b123e3b112e2b13eb12! for d53.

~76!

The expressions for the energy and the value of the square of the total spin forN53 are becoming rather long, so here w
present them only ford51,3 andsp51/2 considering that all the rest can be easily derived similarly to Eqs.~67!, ~68!, and
~71!. So

E3
~A!S d,sp5

1

2D5dE3
~A!~d51, sp50!2H 2e2b1eb

e2b1eb12
for d51

24e8b184e7b1174e6b1150e5b1120e4b169e3b124e2b13eb

3e8b112e7b129e6b130e5b130e4b123e3b112e2b13eb12
for d53

~77!

and

^S~S11!&5H 3

4

e2b1eb110

e2b1eb12
for d51

3

4

3e8b136e7b1109e6b178e5b178e4b179e3b136e2b13eb110

3e8b112e7b129e6b130e5b130e4b123e3b112e2b13eb12
for d53.

~78!
ith

he
ddi-

e
-

For high temperatures~b→0! ^S(S11)& tends to3433 ~three
independent particles! while for low temperatures~b→`! it
yields 3/4.

For greater number of particles (N54,5,...) analogous
expressions can be obtained according to the same ge
scheme starting with formulas similar to Eqs.~57!, ~72!, and
~70!. Though becoming more and more cumbersome th
expressions can be easily obtained with the aid of the a
lytical programs~e.g.,MATHEMATICA !.

V. MC PROCEDURES AND PROGRAMMING

As a basis of simulations we used the partition functio
in symmetrized form,~21! and~23! or ~26! and~27! with the
energy estimator~388!, ~408! ~i.e., the primitive estimator for
kinetic energy! and averaging according to Eqs.~41!–~43!.
ral

se
a-

s

For calculations of̂ S(S11)& forms ~26!, ~27!, and ~29!
were used. Two independent programs were created:~1! in
Pascal and~2! in C language.

In accord with the weight function in Eqs.~26! and ~27!
the MC random walk includes three main types of steps w
attempts of:~1! Shift of an arbitrary beadj (1< j<n) of an
arbitrary particlei (1< i<N); ~2! change of an arbitrary
Fourier amplitudeai jk ~1<k<kmax!; and ~3! change of the
spin S @trial of a new set of coefficientsaGS in Eq. ~27!#.
This point is performed simultaneously with the step of t
first or the second kind. For better averaging, several a
tional types of steps were included as well:~4! move the
whole trajectory of a particle by means of~a! parallel shift of
all its beads;~b! rotation of the trajectory around one of th
coordinate axes;~5! renumeration of particles which pro
vides random walk inside classes. In the case ofN53, for
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instance, the classG5$12% is initially represented by one o
permutations~1–2, 3! the two others being accounted impli
itly by the factorn$12%53 ~see Sec. II C and@2#!; renumera-
tion of particles enables us to include explicitly both oth
permutations—~1–3, 2! and ~2–3, 1!—into averaging; and
~6! cyclic renumeration of beads of a single randomly cho
particle; it results in variation of the exchange factor. App
cation of this algorithm seems to provide reliable sampl
adequately covering significant areas of the space of sta

Simulations of an electronic system in the Coulomb fie
of nuclei creates a problem of potential singularity atr50. It
is resolved by smoothing of the electron-nucleus potentia
short distances which is made in the usual way~e.g.,@17,18#!
substituting it either by a constant~a ‘‘shelf’’ ! or by another
function which is finite at the origin. In most cases we us
a parabolic smoothing

Veff~r !5H 2
e2

r
for r.r 0

ar21b for r<r 0 ,

~79!

where r is an electron-nucleus distance,r 0 is the point of
smooth ‘‘sewing together’’ the Coulomb function and th
parabola with parametersa51/2(e2/r 0

3), b523/2(e2/r 0),
which provide continuity of the potential and its first deriv
tive at r 0 , b being the finite depth of Eq.~79! at the origin.
The value ofr 0 should be chosen small enough to ma
deviations of the results from those for the nonperturbed
tential insignificant, but, at the same time, such that
‘‘sinking’’ of the electron trajectory into a nucleus is pre
vented. The choice ofr 0 is dependent on temperatur
nucleus charge, and can be regulated by the number of b
and kmax ~see Sec. VI!. In test simulations for the groun
state of the hydrogen atom we usedr 050.2–0.3 of the Bohr
radius.

The created programs allow us to perform a variety
simulations. It is possible to simulate systems with a diff
ent number of particles in thed-dimensional harmonic field
in a Coulomb field of a number of fixed nuclei, in cavities
different forms and size. As the input data, the followi
physical parameters are used:~1! the space dimensiond; ~2!
the number of quantum particlesN; ~3! the number and po
sitions of nuclei~while simulating Coulombic systems!; ~4!
the value ofr 0 in Veff ~in the same case!; ~5! the oscillator
strengthb\v ~simulations in the oscillator field!; ~6! param-
eters of the cavity~simulations in a cavity!; and~7! tempera-
ture.

Parameters of the MC procedure are the following:~1! the
number of beadsn; ~2! the value ofkmax; ~3! the number of
MC steps;~4! the length of the initial interval of the chain t
be truncated; and~5! the maximum shifts for steps of eac
kind ~they are arranged so as to adjust the percentag
successful attempts to optimal values of 40–60%!.

It is also possible to switch on or off: interaction betwe
particles; the presence of a cavity with a different set of
parameters~the external potential!; the exchange betwee
particles. The integral in the potential part of the action w
calculated at each step either by the simple trapezoidal
~program 1! or by the Simpson method~program 2! with
r

n

g
s.

at

d

-
e

ds

f
-

of

s

s
le

TABLE I. BF-PIMC data for a system ofN noninteracting iden-
tical particles (sp51/2) in ad-dimensional harmonic field.

~a! N52, d51, NMC
a530 000

bb nb kmax
b ^E&c ^S(S11)&c ^sgn(W)&1

c

0.05 3 1 41.17~2.2!d 1.48 ~0.2! 0.991 ~0.1!
0.25 3 1 8.34~1.7! 1.40 ~0.5! 0.951 ~0.7!
0.5 3 1 4.31~1.6! 1.29 ~0.4! 0.901 ~0.6!
1 3 1 2.38 ~1.6! 1.06 ~2.1! 0.779 ~2.2!
1.5 3 1 1.76~1.7! 0.80 ~0.5! 0.760 ~1.3!
2 5 1 1.39 ~3.3! 0.56 ~3.2! 0.657 ~1.6!
2.5 5 2 1.25~3.7! 0.39 ~6.5! 0.640 ~2.2!
3 5 2 1.15 ~3.5! 0.24 ~12! 0.567 ~4.0!
3.5 6 2 1.07~1.9! 0.13 ~13! 0.614 ~1.0!
4 7 2 1.02 ~1.5! 0.11 ~18! 0.625 ~1.1!
5 7 2 0.99 ~1.7! 0.08 ~25! 0.671 ~1.0!

~b! N52, d53, NMC510 000
b n kmax ^E& ^S(S11)& ^sgn(W)&1

0.05 3 1 121.17~3.3! 1.50 ~0.1! 0.999 ~0.1!
0.25 3 1 23.65~2.8! 1.50 ~0.3! 0.958 ~0.1!
0.5 3 1 12.33~2.6! 1.49 ~0.3! 0.991 ~0.2!
1 5 1 6.51 ~2.5! 1.43 ~1.5! 0.934 ~2.0!
1.5 5 2 5.13~5.4! 1.29 ~3.1! 0.812 ~3.3!
2 6 2 4.08 ~8.0! 1.05 ~4.9! 0.656 ~5.1!
2.5 7 2 3.71~8.2! 0.80 ~5.4! 0.583 ~5.8!
3 7 2 3.39 ~5.9! 0.65 ~1.2! 0.531 ~4.4!
3.5 8 2 3.21~7.3! 0.41 ~8.1! 0.498 ~5.3!

~c! N53, d51, NMC5100 000
b n kmax ^E& ^S(S11)& ^sgn(W)&1

0.05 3 1 59.14~1.9! 2.19 ~0.9! 0.945 ~1.0!
0.25 3 1 12.84~2.1! 1.97 ~1.1! 0.788 ~1.1!
0.5 3 1 6.88~2.0! 1.75 ~1.9! 0.638 ~2.1!
1 3 1 3.99 ~3.0! 1.24 ~2.7! 0.410 ~2.9!
1.5 3 2 3.16~5.9! 1.06 ~7.8! 0.244 ~4.7!
2 5 2 2.84 ~5.6! 0.85 ~11! 0.158 ~5.2!
2.5 5 2 2.71~16! 0.77 ~22! 0.105 ~6.1!
3 6 2 2.54 ~21! 0.68 ~24! 0.051 ~15!
3.5 6 2 2.35~27! 0.036 ~24!
4 7 2 0.029~28!

~d! N53, d53, NMC530 000
b n kmax ^E& ^S(S11)& ^sgn(W)&1

0.05 3 1 175.96~2.6! 2.25 ~0.3! 1.000 ~0.1!
0.25 3 1 35.35~3.0! 2.25 ~0.3! 0.999 ~0.1!
0.5 3 1 19.16~2.5! 2.22 ~0.9! 0.964 ~1.2!
1 5 1 9.95 ~4.1! 2.09 ~2.7! 0.801 ~4.2!
1.5 5 2 7.11~11! 1.70 ~4.1! 0.531 ~9.8!
2 6 2 7.06 ~14! 1.35 ~15! 0.275 ~10!
2.5 7 2 6.24~15! 1.25 ~23! 0.159 ~14!
3 7 2 5.64 ~25! 1.17 ~32! 0.115 ~20!
3.5 8 2 5.14~31! 0.101 ~26!

aNMC is the number of Monte Carlo steps pera component, number
of components isNn(11kmax!.
bInput parameters:b is the inverse temperature@in ~\v!21 units#; n
is the number of beads;kmax is the number of Fourier coefficients
cOutput averages:̂E& is the energy~\v units!; ^S(S11)& is the
square of total spin;̂sgn(W)&1 is the signW @see Eqs.~23! and
~27!, Sec. II C and Eq.~43!, Sec. III A#.
dIn each column the relative error in percent is given in parenthe
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preliminary tabulation of the sine function. The number
integration points is bound with the value ofkmax.

Test simulations presented in Sec. VI were performed
two computers PC 486DX/2-66. Typical calculation time p
each run, Figs. 1–8 and Tables I and II, ranged from 10–
minutes for high temperature cases up to 3 to 4 hours
lowest temperatures studies.

VI. TEST RESULTS AND DISCUSSION

A. Single particle: an electron in the hydrogen atom
and a particle in the harmonic field

To test the bead-Fourier PIMC method and to explore
facilities we started with the simplest case of a single part
in an external field within two models:~1! a charged particle

TABLE II. BF-PIMC data for a system ofN identical particles
(sp51/2) in a three-dimensional harmonic field at fixedx5b\v
as a function of the electrostatic interaction parametery5Cq/Ch .

~a! N52, x51, n53, kmax52, NMC530 000a

y ^E& ^Ek&
b ^S(S11)& ^sgn(W)&1

0 6.52 ~2.5!c 3.30 ~4! 1.430 ~1.5! 0.934 ~2.0!
0.4 6.57 ~3.4! 3.12 ~7! 1.448 ~0.6! 0.930 ~0.8!
0.8 6.84 ~1.6! 3.30 ~2! 1.459 ~0.5! 0.956 ~0.7!
1.2 7.24 ~3.0! 3.32 ~4! 1.472 ~0.4! 0.967 ~0.9!
1.6 7.53 ~3.5! 2.90 ~5! 1.480 ~0.4! 0.982 ~0.6!
2.0 8.42 ~2.2! 3.43 ~3! 1.490 ~0.2! 0.992 ~0.2!
2.4 8.18 ~2.2! 2.99 ~6! 1.497 ~0.2! 0.995 ~0.3!
2.8 8.96 ~1.8! 3.53 ~2! 1.499 ~0.2! 0.997 ~0.2!
~b! N52, x52, n57, kmax52, NMC530 000
y ^E& ^Ek& ^S(S11)& ^sgn(W)&1

0 4.09 ~8.0! 2.08 ~11! 1.140 ~4.9! 0.719 ~5.1!
0.2 4.70 ~4.2! 2.07 ~5! 1.232 ~3.0! 0.726 ~3.3!
0.4 5.38 ~4.3! 2.21 ~10! 1.352 ~3.5! 0.822 ~3.8!
0.6 5.64 ~2.5! 2.03 ~6! 1.364 ~2.3! 0.822 ~2.6!
0.8 5.96 ~4.2! 1.86 ~5! 1.415 ~2.3! 0.877 ~2.8!
1 6.35 ~2.2! 1.84 ~7! 1.450 ~1.2! 0.923 ~1.5!
1.2 6.80 ~2.8! 1.91 ~9! 1.454 ~1.6! 0.930 ~2.1!
1.4 6.97 ~1.6! 1.77 ~7! 1.475 ~0.9! 0.960 ~1.2!
1.6 7.51 ~1.9! 1.94 ~7! 1.462 ~1.5! 0.936 ~2.0!
2 8.08 ~1.4! 1.89 ~6! 1.493 ~0.5! 0.988 ~0.6!
2.4 8.72 ~1.1! 1.89 ~5! 1.491 ~0.7! 0.982 ~0.9!
2.8 9.34 ~1.4! 1.92 ~6! 1.493 ~1.1! 0.984 ~1.5!
3.2 9.89 ~1.0! 1.94 ~5! 1.501 ~0.1! 1.000 ~0.1!
~c! N53, x51, n55, kmax51, NMC530 000
y ^E& ^Ek& ^S(S11)& ^sgn(W)&1

0 9.93 ~4.1! 4.86 ~5! 2.089 ~2.7! 0.801 ~1.2!
0.4 11.37 ~4.9! 5.27 ~5! 2.135 ~2.9! 0.878 ~3.6!
0.8 12.02 ~1.7! 4.86 ~4! 2.161 ~1.2! 0.914 ~1.5!
1.2 12.89 ~1.2! 4.95 ~3! 2.180 ~1.6! 0.934 ~1.9!
1.6 13.75 ~1.2! 4.86 ~4! 2.198 ~1.0! 0.949 ~1.2!
2.0 14.73 ~1.7! 4.95 ~5! 2.212 ~1.0! 0.962 ~1.3!
2.4 15.54 ~0.8! 5.00 ~2! 2.220 ~0.9! 0.968 ~1.2!
2.8 16.05 ~0.8! 4.72 ~3! 2.240 ~0.1! 0.989 ~0.3!

aMeanings ofn, kmax, NMC , ^E&, ^S(S11)&, ^sgn(W)&1 are the
same as in Table I.
b^Ek& is average kinetic energy.
cIn each column the relative error in percent is given in parenthe
f
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in a three-dimensional Coulomb potential—a hydrog
atom, in this case we can reproduce its exact ground-s
energy and the distribution function;~2! a particle in a one-
dimensional harmonic field.

We simulated an electron in the electrostatic poten
smoothed at short distances according to Eq.~79! with
r 050.2–0.3Rb ~Rb50.53 Å being the Bohr radius!. In most
of our runs we used temperatureT510 000 K ~about 1 eV!
which is ten times less than the first gap in the hydrog
spectrum@~121/4! 13.6 eV510.2 eV!. So we are sure to
obtain almost pure ground-state energyE05213.6 eV and
the distribution function of the electron.

Convergence of the calculated energy to the exact grou
state level is demonstrated in Fig. 1. Figure 1~a! shows how
the results attain the levelE0 in three series of BF-PIMC
calculations~T510 000 K! for different fixed numbers of
beadsn with the increase ofkmax. It is evident that forn570
kmax53 is already sufficient while forn550 saturation is
achieved only forkmax54; for n530 evenkmax56 is yet
insufficient. For a lower temperature~T55000 K! dependen-
cies both forn530 and 50 are far from saturation within th
range of kmax<6. Analogous dependencies of^E& on the
number of beadsn for different fixed values ofkmax @Fig.
1~b!# are also instructive in making choice of the optimal s
of parametersn and kmax. It is seen thatkmax53 provides
practical identity of results forn>40 while for kmax51 the
level E0 is not achieved even forn580. Figure 2 demon-
strates a good reproduction of the exact electron den
distribution function in the ground state „r(r )
5(1/pRb

3)exp(2[2r /Rb]) … in calculations with the optima
set of input free parametersn andkmax.

Figure 3 shows convergence of the calculated energ
the exact dependence~E051/2 cothb/2! with the increase of
kmax for different reduced temperatures and the number
beads for the quantum oscillator. It is seen that lower te
peratures and smaller number of beads require higher va
of kmax for saturation to the desired level. The optimal com
bination ofn andkmax for each inverse temperature can
readily determined from such plots.

It should be noted again thatkmax50 corresponds to
‘‘pure bead’’ method with the only difference that in th
case the potential source is homogeneously distributed a
the interval between two beads while in the ‘‘initial’’ bea
method~as it is treated in most papers! the potential is cen-
tered on beads. The continuous distribution variant is c
tainly better for PIMC computations. Though even in th
case, as we can see in Fig. 1~a!, n570 is far from being
sufficient to reproduce correctlyE0 for H atom. On the other
hand ‘‘pure Fourier’’ procedure means in our terms th
n51. Looking at Figs. 1~a! and 1~b! it is not easy to imagine
how great is the number of Fourier components which co
provide an adequate result in calculations withn51. So, as
it was mentioned in the Introduction, ‘‘pure bead’’ an
‘‘pure Fourier’’ procedures as being the extreme cases of
combined approach are far from the optimal simulation
gime.

B. Several noninteracting identical particles
with sp51/2 in harmonic field

We use a favorable opportunity to check the quality of t
developed procedures by comparison of simulation res

s.
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FIG. 1. Average energy of an electron inH
atom from BF-PIMC simulations with a differen
number of beadsn and number of Fourier com
ponentskmax. Horizontal line is the ground-state
energyE05213.6 eV;~a! for various number of
beadsn and temperaturesT as a function ofkmax;
values ofn: 1230, 2250, 3270 ~T510 000 K!;
4230, 5250 ~T55000 K!; ~b!—for variouskmax
at T510 000 K as a function of the number o
beadsn; values ofkmax: 121, 222, 323; ~lines
connecting points are drawn to guide the eye!.
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for systems ofN52 and 3 identical particles withsp51/2 in
a d-dimensional harmonic field with the exact dependenc
derived in Sec. IV~Figs. 4–6, Table I!.

Simulation data forN52 versus inverse temperature f
canonical energy and average square of the total spin
presented in Figs. 4~a! and 5~a!, corresponding exact depen
dencies are shown by solid lines. For the energy we obs
almost perfect reproduction of the exact curves in a w
temperature range up to the ground-state levels for both
mensions,d51 and 3. For̂S(S11)& the coincidence is also
good though for highb the statistical errors increase consi
erably ~see Table I!. For ^sgn(W)&1 @Fig. 6~a!# there exists
no exact expression to be compared with simulation resu
The general feature of observed dependencies is their
crease with the increase ofb though, even for highestb,
values of^sgn(W)&1 do not fall lower than 0.6 ford51 and
0.4 for d53. So, as it could be expected from general co
siderations, forN52, sp51/2 the sign problem does not ye
arise.
s
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ve
e
i-

s.
e-

-

Analogous data forN53 are presented in Figs. 4~b!, 5~b!,
6~b!. In this case the decrease of^sgn(W)&1 with the growth
of b is much stronger@Fig. 6~b!#. Thus forb53–4 values of
^sgn(W)&1 are already either equal to 0.1~for d53! or less
than 0.1~for d51!. So forN53 the sign problem already
emerges. Nevertheless,E dependencies onb @Fig. 4~b!# are
reproduced in BF-PIMC simulations almost as accurately
for N52 @Fig. 4~a!#. For ^S(S11)& accuracy of results are
good forb<2.5 (d51) and forb<2 (d53). In the latter
case for higherb the error becomes great~see Table I! and
we get a considerable scatter of MC results.

C. Several identical particles,sp51/2,
with electrostatic repulsion in harmonic field

The effect of gradual switching on of the electrosta
repulsion between particles in the above considered mo
~N identical particles in the harmonic field! is revealed in
Figs. 7, 8, and Table II.
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FIG. 2. Electron density distribution function
in H atom. Solid lines are exact dependencie
12r~r!5~1/pRb

3!exp~2@2r /Rb#!; 224pr 2r~r !.
Points are corresponding BF-PIMC distribution
obtained atT510 000 K for n570, kmax56,
r 050.2Rb @see Fig. 1~a!#.
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The parameter which determines the ratio of electrost
interaction to the harmonic field intensity isy5Cq/Ch where
Cq5e2/L; Ch5mv2L2/2, L being the thermal wavelength
Finally we get

y5
e2

h
A2m

p

1

x2
Ab,

wherex5b\v, b5(kT)21. So for each fixedx andy ~if e
andm are the charge and the mass of an electron! we can
obtain the temperature in Kelvin.

We performed three series of simulations each with fix
x and gradual increase ofy. Figures 7 and 8 demonstra
how ^S(S11)& and^sgn(W)&1 starting with their values for
a system of noninteracting particles~Table I, Figs. 5 and 6!
tend to their ‘‘classical’’ levels as the electrostatic repulsi
ic

d

is being switched on. Correspondingly the total ener
~Table II! monotonously increases while the kinetic ener
practically remains constant.

VII. CONCLUDING REMARKS

In this paper the combined, bead-Fourier, variant of
PIMC method was formulated and relevant expressions
partition functions and canonical averages were derived b
for systems of distinguishable and identical particles. ‘‘Pu
bead’’ and ‘‘pure Fourier’’ methods are the extreme cases
our combined approach and appear to be nonoptimal c
pared with the latter. In the case of identical particles for
symmetrical with respect to exchange were introduced; o
forms of the partition function with explicit averaging ove
the square of the total spin or its projection were obtained
in

s

FIG. 3. Average energy of a single particle
one-dimensional harmonic field inE0 units
~E051/2 cothb/2 is the exact dependence! as a
function of kmax for different values of inverse
reduced temperatureb and the number of bead
n; values ofb and n: 1210 ~3!, 225 ~3!, 321
~3!, 425 ~6!, 525 ~10!; ~lines connecting points
are to guide the eye!.
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FIG. 4. b dependency of the average ener
~hv units! for a system ofN noninteracting iden-
tical particles (sp51/2) in d-dimensional har-
monic field. ~a!—N52; ~b!—N53. 12d51;
22d53. Solid lines are exact dependencies~68!
for ~a! and~77! for ~b!, Sec. IV. Horizontal lines
mark ground states:E1gs51,E3gs53 for ~a! and
E1gs52.5,E3gs55.5 for ~b!.
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well. Relevant algorithms and computer programs, crea
on the basis of the suggested approaches, were teste
comparing simulation results with exact data, both for
single particle in the external field~H atom, harmonic oscil-
lator! and a model system ofN52,3 identical noninteracting
particles in the harmonic field. To carry out such comparis
we derived exactb dependencies of canonical averages
the system of noninteracting identical particles with spin i
d-dimensional harmonic field. The comparison indicates t
the developed approaches and simulation procedures
reliable results in a wideb range up to rather low relative
temperatures~b<324!. Simulations with switching on of
the electrostatic repulsion between particles in the harmo
field demonstrate gradual removal of the exchange effe
The attractive feature of the developed BF-PIMC method
that for each simulated quantum system it is possible to
termine the optimal computational regime by an appropr
choice of the number of beads and value ofkmax. The results
d
by
a

n
r
a
t
ive

ic
ts.
s
e-
e

obtained in this work provide certain optimism in furth
attack on finite temperature simulations of systems includ
electrons such as dense plasma, electrides, metallic m
drops in zeolites, etc. The BF method can also be usefu
PIMC simulations of heavy quantum particle systems wh
the exchange effects are usually neglected.
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APPENDIX

1. A single particle in one dimension

Our first step is to show that in the case of the on
dimensional harmonic potentialV(x)5(mv2/2)x2 the parti-
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FIG. 5. b dependency of the average squa
of total spin for the same systems as in Fig.
~a!—N52; ~b!—N53. 12d51; 22d53.
Solid lines are exact dependencies~71! for ~a!
and~78! for ~b!, Sec. IV. Horizontal line in~b! is
the ground-state level.
x

tion function for a single particle, Eq.~11!, yields
Z15@2 sinh~b/2!#21. The easiest way to do so is to use e
pression~11! in a purely Fourier form~i.e., the number of
beadsn51!

Z15E 1

Ap
dx̃)

k51

`
pk

A2p
dãk

3expF2S (
k51

`
~kp!2

2
ã k

21E
0

1

Ṽ@ x̃~j!#dj D G ,
~A1!

where the potential now is
- Ṽ@ x̃~j!#5b
mv2

2
unit2@ x̃~j!#25~b\v!2x̃ 2~j!

and

x̃~j!5 x̃1(kãksinkpj.

Its integration yields

E
0

1

Ṽ@ x̃~j!#dj5~b\v!2S x̃ 212x̃(
k
ãkf k1(

k

ã k
2

2 D ,
where
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f k5E
0

1

sinkpjdj5
1

kp
@12~21!k#. ~A2!

From here to the conclusion of the Appendix we om
tildes overx andak and useb instead ofb\v. The exponent
term in ~A1! now becomes

expF2S (
k

~Bkak
21b2akf k2x!1b2x2D G ,

where

Bk5
b21~kp!2

2
. ~A3!
t

It can be transformed into

expF2S (
k

~akABk1xCk!
21ax2D G ,

a5b22(
k
Ck
2, Ck5

b2f k

ABk

. ~A4!

So the partition function becomes a product of Gauss in
grals, internal infinite productI 1 and external one-
dimensional integralI 2
of
n-
FIG. 6. b dependency of the average sign
W for the same systems as in Figs. 4, 5. Horizo
tal line in ~b! marks the 0.1 level.
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I 15)
k51

` E
2`

` pk

A2p
dakexp@2~akABk1xCk!

2#

5F )
k51

` S 11
b2

~kp!2D G21/2

5S b

sinhb D 1/2. ~A5!

The infinite product here is reduced to a sinhb function ac-
cording to @19#, Chap. 1, No. 1.431.2. Note also that th
result, Eq.~A5!, is independent ofx. So

I 25E
2`

` dx

Ap
exp~2ax2!5

1

Aa
. ~A6!

For a we have from Eqs.~A4!, ~A3!, and~A2!

FIG. 7. Average of the square of the total spin vsy for a system
of N identical particles (sp51/2) with Coulomb interaction in
three-dimensional harmonic field with fixedx5b\v: 12N52,
x51; 22N52, x52; 32N53, x51.

FIG. 8. y dependency for̂sgn(W)&1 , the system and designa
tions are the same as in Fig. 7.
a5b2S 12b2(
n51

`
8

~2n21!2p2@~2n21!2p21b2# D
5b2F128S 1

p2 (
n51

`
1

~2n21!2
2 (

n51

`
1

~2n21!2p21b2D G
5b2F 128S 1

p2

p2

8
2

tanhS b

2 D
4b

D G52b tanhS b

2 D ~A7!

~both sums are reduced according to@19#, Chap. 0, No
0.234.2 and Chap. 1, No 1.421.2!. CombiningI 1 and I 2 we
have finally forZ1

Z15I 1I 25S b

sinh~b!2b tanhS b

2 D D 1/2

5F2 sinhS b

2 D G21

.

~A8!

2. N identical particles

In the case ofN identical particles (d51) we can start
with Eqs.~15!–~19! using the pure Fourier form of Eq.~19!
(n51) for ZD(P)

ZD~P!5E dt expF2(
i51

N S (
k51

`
~kp!2

2
aik
2 1@x2P~xi !#

2

1E
0

1

V@xi~j!#dj D G . ~A9!

After integration of the potential the exponent in Eq.~A9!
finally transforms into

expF2(
i

S (
k
Bkaik

2 1@xi2P~xi !#
21

b2

3
$xi

21@P~xi !#
2

1xiP~xi !%12b2H xi(
k
aik f k1@P~xi !2xi #(

k
aikgkJ D G .

~A10!

HereBk and f k are determined as in Eqs.~A3! and~A2! and
gk5* 0

1j sinkpjdj5[2(21)k/kp].
For the identical permutation (1N) it yields

expF2(
i

S (
k

~Bkaik
2 1b2aik f k2xi !1b2xi

2D G .
~A11!

So Eq.~A9! becomes a product ofN identical integrals~A1!
and we finally obtain

ZD~1N!5~Z1!
N5F2 sinhS b

2 D G2N

. ~A12!

In the general case~A10! we again arrive at separation o
ZD(P) into Gauss integralsI 1 and I 2
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I 15)
i51

N

)
k51

` S E
2`

` kp

A2p
daikexp@2~aikABk1Cik!# D ,

~A13!

where now

Cik5b2
xi f k1@P~xi !2xi #gk

ABk

. ~A14!

I 1 does not depend onCik ~and, hence, on coordinatesxi!
and it yields theNth power of Eq.~A5!

I 15S b

sinhb D N/2.
It remains for us to calculate the integralI 2

I 25E )
i51

N
dxi

Ap
expF2(

i
S 2(

k
Cik
2 1@xi2P~xi !#

2

1
b2

3
$xi

21@P~xi !#
21xiP~xi !% D G . ~A15!

Transformation of the sum overk yields

(
k
Cik
2 5b4Fxi2(

k

~ f k2gk!
2

Bk
1@P~xi !#

2

3(
k

gk
2

Bk
12xiP~xi !(

k

~ f k2gk!gk
Bk

G .
~A16!

As far as g k
25( f k2gk)

25(kp)22 and (f k2gk)gk
5(21)k11(kp)22, the sum, Eq.~A16!, can be further trans
formed as

(
k
Cik
2 5b4F @xi

21P~xi !
2#(

k

2

~kp!2@b21~kp!2#

12xiP~xi !(
k

2~21!k11

~kp!2@b21~kp!2#G
52b2F @xi

21P~xi !
2#S 1

p2 (
k

1

k2
2(

k

1

b21~kp!2D
12xiP~xi !S 1

p2 (
k

~21!k11

k2
2(

k

~21!k11

b21~kp!2D G
52b2H @xi

21P~xi !
2#F 1p2

p2

6
2S cothb2

1

b D 1

2bG
12xiP~xi !F 1p2

p2

12
1S 1

sinhb
2
1

b D 1

2bG J . ~A17!

The sums in Eq.~A17! are reduced due to@19# Chap. 0, No.
0.233.3; Chap. 1, No. 1.421.4; Chap. 0, No. 0.234.1; Ch
1, No. 1.217.2. Substituting this into Eq.~A15! we finally
obtain for I 2 :
p.

I 25E )
i51

N
dxi

Ap
expF2

b

sinhb (
i

$@xi
21P~xi !

2#coshb

22xiP~xi !%G . ~A18!

Now for ZD(P) we have

ZD~P!5I 1I 2

5S b

sinhb D N/2I 2
5

1

pN/2 E )
i51

N

dyi

3expF2(
i

$C@yi
21P~yi !

2#22yiP~yi !%G .
~A19!

Here

C5coshb, yi5S b

sinhb D 1/2xi .
FactorI 15~b/sinhb!N/2 in Eq. ~A19! is ‘‘consumed’’ by the
new variableyi .

For each permutation the integralZD(P), Eq. ~A19!, evi-
dently separates into a product over cycles,

ZD~P!5ZD~G!5 )
1<n<N

~Zn!Cn~G!.

So our aim is to calculate the integral~A19! for a single
cycle of the lengthn which we designate asZn

Zn5
1

pn/2 E )
i51

n

dyiexp$2@2C~y1
21y2

21•••1yn
2!

22~y1y21y2y31•••yn21yn1yny1!#%. ~A20!

To calculate this integral we consider the bilinear form in t
exponent as a scalar product of vectorsyA and y, (yA,y),
wherey5(y1 ,y2 ,...,yn) and matrixA is

A5S 2C 21 0 ••• 21

21 2C 21 ••• 0

A A A

21 ••• ••• 21 2C

D . ~A21!

Reducing the bilinear form in the exponent~A20! to a qua-
dratic form we rewrite the integralZn as

Zn5
1

pn/2 )
i51

n S E
2`

`

dtiexp@2l i t i
2# D 5

1

Al1 ...ln

5~DetA!21/2. ~A22!
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Herel i are the eigenvalues of the matrixA and their product
equals to the determinant ofA. It is not difficult to show that
DetA can be expressed as

DetA52~CDn212Dn2221!, ~A23!

whereDn is the determinant of the three-diagonal matrix

S 2C 21 0 ••• 0

21 2C 21 ••• 0

A A A

0 ••• ••• 21 2C

D . ~A24!

For Dn it is easy to obtain a recurrent formula

Dn52CDn212Dn22 . ~A25!

The ratioDn/Dn21 satisfies the following relation:

Dn

Dn21
5
sinh~n11!b

sinhnb
. ~A26!

This can be readily verified forn52,3, etc. Its proof requires
cs

ev

h

induction to be applied. Consider that this is true forn. Then
it should be valid also forn11. We start with Eq.~A25! for
n11 and use Eq.~A26!

Dn11

Dn
52C2

Dn21

Dn
5expb1exp~2b!

2
expnb2exp~2nb!

exp~n11!b2exp@2~n11!b#
5
sinh~n12!b

sinh~n11!b
.

~A27!

So Eq.~A26! is valid. Now as far as

Dn5
Dn

Dn21

Dn21

Dn22
•••

D2

D1

D1

D0
, ~D051!,

we apply Eq.~A26! and obtain forDn

Dn5
sinh~n11!b

sinhb
. ~A28!

Substituting Eqs.~A28! into ~A23! we can write for DetA
Det A52S coshb
sinhnb

sinhb
2
sinh~n21!b

sinhb
21D5

2@coshb sinhnb2~sinhnb coshb2coshnb sinhb!2sinhb#

sinhb

52~coshnb21!54 sinh2~nb/2!. ~A29!
l

rm

l

So finally we have

Zn5
1

2 sinh~nb/2!
. ~A30!

In the d-dimensional case forZn we get Eq.~A30! to the
power ofd.
Expression~A30! for Zn was obtained based on the initia
partition function~A9! in the pure Fourier form. It should be
pointed out that if we started with the bead-Fourier fo
with n.1 it would result simply in substitution in Eq.~A30!
n by nn andb by b/n which naturally yields the same fina
formula ~A30!.
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